TECHNICAL DOCUMENTATION FOR A RESIDENTIAL ENERGY USE DATA BASE DEVELOPED IN SUPPORT OF ASHRAE SPECIAL PROJECT 53

Y.J. Huang R. Ritschard J. Bull

Energy Analysis Program
Applied Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

November 10, 1987

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building and Community Systems, Building Systems Division of the U. S. Department of Energy under contract DE-AC06-76RLO-1830.

SUMMARY

Starting in 1986, Pacific Northwest Laboratory (PNL) has been working with ASHRAE Special Project 53 to conduct research in support of a residential energy conservation standard. The Energy Analysis Program at Lawrence Berkeley Laboratory (LBL) has been contracted by PNL to develop a new residential energy use data base in support of this effort. The simulation methodology improves upon that used earlier by LBL in producing the voluntary energy guidelines data base. Significant enhancements were made in the modeling of underground heat flow, window operations and glazing types, and cooling loads. Since the proposed standards will be in a computerized format, the final data base was tailored to utilize the capabilities of a micro-computer program.

The residential energy use data base was developed using the DOE-2.1C building energy simulation program and covers three building prototypes (one-story, town-house, and apartment), three foundation conditions (slab-on-grade, basement, and vented crawl space) in 45 U.S. locations. For each building prototype and location, a range of insulation, infiltration, and window conditions were considered. The calculated annual heating and cooling loads were analyzed and reduced to regression coefficients giving the contribution to building load of each component, i.e., ceiling, walls, infiltration, as a function of its thermal and physical characteristics.

The primary format of the data base is a computer file of regression coefficients coded by prototype, location, building component, and separated by heating or cooling. The same information is also available in printed form on tables that also show the incremental changes in heating and cooling loads for typical conservation measures. The data base serves as the building loads calculation portion of the computer program being developed by PNL as a residential conservation standard.

CONTENTS

SUMMARY	ii
INTRODUCTION	1
1. BUILDING ENERGY ANALYSIS	2
1.A Basic Simulation Method	2
1.A.1 Response Factors	2
1.A.2 Below-grade Modeling	3
1.B Building Prototypes	10
1.C Building Envelope	12
1.C.1 Insulation	12
1.C.2 Infiltration	15
1.C.3 Window Characteristics	16
1.D Building Operating Conditions	17
1.E Building Locations	20
2. ANALYSIS OF HEATING AND COOLING LOADS	22
2.A Component Loads	22
2.B Ceilings and Walls	23
2.C Foundation insulation measures	29
2.D Infiltration	32
2.E Windows	41
3. RESULTS	55
3.A Tables for Insulation and Infiltration Measures	55
3.B Tables for Mass Walls and Solar Gain Measures	192
4. REFERENCES	238
APPENDIX A Master DOE-2 Input File	240
APPENDIX B Sample Processed DOE-2 Input File	254

FIGURES

1.1 WALFERF Input for R-11 Wood-frame Wall	4
1.2 WALFERF Input for 8-inch Log Wall	5
1.3 WALFERF Input for R-10 Concrete-block Wall	6
1.4 WALFERF Input for R-19 Ceiling Assembly	7
1.5 WALFERF Input for R-11 Floor Assembly	8
1.6 Foundation Cross-section Modeled in the USCUG Program	9
1.7 Average Hourly Fluxes for Basement Foundations	
in Denver Calculated by the USCUG Program	9
1.8 Regression Analysis of Steady-State U-values for	
Basement Foundations in Denver	11
1.9 Internal Load Profile	18
2.1 - 2.2 Correlations of Δ Ceiling Loads to U-values	25
2.3 - 2.4 Correlations of Δ Wall Loads to U-values	27
2.5 - 2.8 Correlations of Δ Loads to U-values for Mass Walls	30
2.9 - 2.16 Correlations of Δ Foundation Loads to U-values	33
2.17 - 2.18 Correlations of Δ Infiltration Loads to	
Effective-leakage-fractions	42
2.19 Correlation of Average Winter Air-change Rates to	
Effective-leakage-fractions	44
2.20 - 2.21 Correlations of Δ Window Conduction Loads to U-values	45
2.22 (dLoad/dSolar Aperture) as a Function of Total	
Solar Aperture in Albuquerque	51
2.23 Multi-linear Correlation of Δ Cooling Loads to	
Solar Aperture in Phoenix	52
2.24 Correlation of Δ Cooling Loads to	
Solar Aperture*Solar Usability in Phoenix	52
2.25 Multi-linear Correlation of Δ Heating Loads to	
Solar Aperture in Albuquerque	53
2.26 Correlation of Δ Heating Loads to	
(Solar Aperture*Solar Usability) in Albuquerque	53

TABLES

1.1 Prototype Building Dimensions	12
1.2 Steady-state U-values for Building Components	
calculated by the WALFERF Program	14
1.3 Foundation Insulation Levels	15
1.4 Window U-values	. 17
1.5 Shading Coefficients for Typical Glazing Products	19
1.6 Internal Loads Schedule	18
1.7 Building Locations	21
2.1 Parametric Analysis of Insulation Measures	24
2.2 Parametric Analysis of Window Conditions	47
2.3 Window Regression Analysis for Albuquerque Heating Loads	49
2.4 Window Regression Analysis for Phoenix Cooling Loads	50

INTRODUCTION

Over the past decade, the Energy Analysis Program at Lawrence Berkeley Laboratory has conducted extensive computer analysis of the impact of various conservation measures on energy use in residential buildings in different U. S. locations. From 1982 to 1986, LBL was involved in the voluntary residential standards project funded by Department of Energy, and compiled a large data base of residential energy use from parametric simulations using the DOE-2.1A and DOE-2.1B energy simulation programs. The methodology used to build that data base have been extensively reviewed and documented in a technical support document (Huang et al. 1987). The final version of the data base is an interactive computer program called PEAR (Program for Energy Analysis of Residences; Energy Analysis Program 1987). The same data base is also used in the proposed energy conservation standards for new federal residential buildings, and the 1987 draft of ASHRAE-90.2 Standard.

The data base effort described in this report was done by LBL on contract to Pacific Northwest Laboratory for the ASHRAE Special Project 53, "Research in Support of a Residential Energy Conservation Standard". After reviewing the earlier voluntary energy guidelines work, the SP53 committee recommended that the data base be expanded to include additional conservation measures and upgraded with improved analysis of foundation and cooling loads. After discussions between the committee, PNL, and LBL, the decision was reached to create a new data base. This decision would insure compatibility throughout the data base, and utilize improved simulation techniques, more realistic operating assumptions, and better weather data developed over the past six years. Although repeating the DOE-2 simulations required a substantial amount of computer time, the staff effort was reduced since the methodology and analysis techniques had been developed already in the course of the voluntary energy guidelines work.

Whenever this data base work utilizes the same assumptions and analysis techniques as the earlier work, these will be briefly summarized in this report, and references made to the technical documentation for the earlier work for further details. This applies to the prototype building descriptions, the selection of base cities, internal loads, and construction details. This report will focus more on those areas where substantial improvements have been made in simulation techniques or in the analysis of results. The major areas include (1) use of a two-dimensional finite-difference program to calculate heat fluxes through the building-ground interface, (2) use of non-linear multi-variant regression analysis to correlate window loads, and (3) reduction of building loads data into regression coefficients.

BUILDING ENERGY ANALYSIS

Basic Simulation Method

The data base simulations were done using a developmental version of the DOE-2.1C program (for a description of DOE-2, refer to Lawrence Berkeley Laboratory 1980). In addition, two smaller programs were used to generate inputs to DOE-2.1C for response factors and underground heat fluxes.

Compared to earlier versions of DOE-2, DOE-2.1C has improved modeling of solar gain, internal walls, residential infiltration, better custom weighting factor calculations, and new system performance curves that more accurately model part load effects in residential air-conditioners. DOE-2.1C also has the flexibility of permitting user-input functional values in the LOADS portion of the simulations. This feature was used in the data base work to define the summer window shading schedule based on cooling degree days, and to input heat fluxes calculated by a two-dimensional finite difference model in place of the standard DOE-2 calculations for underground surfaces.

The developmental 2.1C version used to generate the data base has the following enhancements to the Residential SYSTEMS portion of the program: (1) the natural ventilation rate is calculated as a function of exterior wind speed and temperature rather than a fixed input value, and (2) the natural ventilation controls are held fixed between midnight and 7 a.m., i.e., it is assumed that occupants will not operate the windows after going to bed. These modifications give more realistic modeling of typical window operations in residences and will be included in future public releases of DOE-2.1.

Two additional programs, WALFERF and a finite-difference program for underground heat flow developed by the Underground Space Center at the University of Minnesota (here referred to as the USCUG model), were used to improve the modeling capabilities of DOE-2.1C.

Response Factors

WALFERF is a finite-element program developed at LBL to calculate wall response factors for two-dimensional heat conduction. The program is based on a DOE-2 subroutine originally written to model earth contact surfaces (Bull et al. 1981) and uses a technique developed by Ceylan and Myers (Ceylan et al. 1979). In addition to the standard input for thermal properties, thicknesses, and sequence of materials

making up each block, WALFERF also requires the number of blocks and their widths. Figure 1.1 shows a sample input file and schematic representation of a R-11 wood-frame wall modeled as two blocks, a stud portion 0.75 inch wide and a non-stud portion 2.25 inches wide. Figures 1.2 through 1.5 show similar input files for typical log wall, concrete wall, ceiling, and floor assemblies. The output from WALFERF are two-dimensional response factors that can be written into the standard DOE-2 response factor library format. For a wall composed of a single block, WALFERF produces the same response factors as the DOE-2 BDL program. Future release versions of DOE-2 program will include WALFERF as a utility program. For the residential data base, WALFERF was used to generate the response factor library for the delayed walls. This method accounts for two-dimensional heat flow in mixed walls and obviates the need to model separately the stud and non-stud portions of walls.

Below-grade Modeling

Since the existing DOE-2 program does not adequately model the building-to-ground interface, LBL has worked with the Underground Space Center (USC) at the University of Minnesota to incorporate into DOE-2.1C results from a below-grade heat transfer simulation program developed at the USC. The USCUG model is a two-dimensional fully-implicit integrated finite difference heat conduction program (Underground Space Center 1983). It was used to simulate on a daily time step the dynamic behavior of a representative one-foot vertical cross-section of the foundation and surrounding soil extending 50 feet down and 30 feet out from the building (Figure 1.6). The boundary conditions, i.e., the assumed indoor, outdoor and deep ground temperatures, were kept identical as those used for the DOE-2 simulations. Deep ground temperatures were based on existing data on well temperatures (Labs 1981), indoor temperatures set to the zone temperature in the DOE-2.1C LOADS calculation, and the average outdoor daily air temperatures calculated from the DOE-2 weather tapes. A three-year initialization period was necessary for the representative section to stabilize.

The USCUG simulations yield daily fluxes at each node of the finite difference grid for the representative section. These fluxes were then integrated over the "foot-print" of the prototype foundation to produce a file of average hourly fluxes through the underground surfaces of the prototype buildings for each day of the year (Figure 1.7). During the DOE-2.1C simulation, these fluxes are read as a function in LOADS, supplanting the standard DOE-2 underground flux calculation. Although the DOE-2 program was not used for calculating underground heat conduction, it was still necessary to model the underground layers as delayed walls to calculate response factors. These

Figure 1.1 WALFERF Input for R-11 Wood-frame Wall

r11rwall 0 0 17 0.0925 0.0263 0.0342 0.0168 0.9217 0.9901	0.26 0.20 0.31 0.29 0.24 0.24	50.0 1.15 22.0 1.0 .075 .075	3. 4. 6. 9. 16. 17.	(file name)
4 1 9 1 6 2 4 2 1 3	3.0 0.12 3.0 0.5 3.0 3.5 2.25 0.75 0.5 3.0 0.680	No. of laye L-1 L-2 L-3 L-4	ors .	(no. of layers and total width) (no. of blocks and thickness for L-1) (material and width) (no. of blocks and thickness for L-2) (material and width) (no. of blocks and thickness for L-3) (material and width) (material and width) (no. of blocks and thickness for L-4) (material and width) (ino. of blocks and thickness for L-4) (material and width) (inside film resistance)

Figure 1.2 WALFERF Input for 8 inch Log Wall

8log 0 0 1 12 .5 .5 .0669 .0925 .0263 .4167	.22 .22 .29 .26 .20	70.0 140.0 34.0 50.0 1.15 116.0	1. 2. 3. 4. 5.	mason1 mason2 wood drywall insulation stucco	(file name) (number of material descriptions) (conductance, specific heat, and density of materials)
1 1 3	2.00 8.00 2.00 .680	No. of laye L-1	rs	(no. of bloc (material a	rs and total width) ks and thickness for L-1) nd width) resistance)

Layer 1 8.00"

Blk 1 R 9.9651 wood

I F R = 0.6800

Figure 1.3 WALFERF Input for R-10 Concrete-block Wall

r10cb95 0 0 12 .5 .5 .0925 .0263 .4167 .5 .5 .2 .5	.22 .22 .26 .20 .22 .22 .22 .30 .30	70.0 1. 140.0 2. 50.0 4. 1.15 5. 116.0 6. 70.0 7. 140.0 8. 5.0 9. 5.0 100750 12.	mason1 mason2 drywall insulation stucco concblock1 concblock2 perlite1 perlite2 4.88" block o	(file name) (number of material descriptions) (conductance, specific heat, and density of materials)
5 1 6 1 5 1 7 2 7 12 1	3.06 0.50 3.06 3.16 3.06 1.38 3.06 4.88 0.63 2.43 1.38 3.06 .680	No. of layers L-1 L-2 L-3 L-4	(no. of blocks) (material and (material and	s and thickness for L-2) I width) s and thickness for L-3) I width) s and thickness for L-4) I width) I width) s and thickness for L-5) I width) s and thickness for L-5) I width)
		Layer 1 0.50" Blk 1 R 0.100 Layer 2 3.16" Blk 1 R10.012 Layer 3 1.38" Blk 1 R 0.230 Layer 4 4.88" Blk 1 R 0.813 Blk 2 R 1.010 Layer 5 1.38" Blk 1 R 0.2300 I F R = 0.6800	O stucco 7 insulati O concbloc 3 concbloc 1 4.88" bl	:k3 :k3 ock gap
		0.4167 4.88" bl 0.4026 insulati 0.0263 concbloc	0.240 on 0.200	0.07

Figure 1.4 WALFERF Input for R-19 Ceiling Assembly

r19roof 0 0 1 18 .0669 .29 34.0 2. wood (conductance, specificance) .6873 .24 .075 .11. attic .0249 .1897 .15 .15 .1308775 .275 50.0 140633 .275 27.0 15. woods .42245 .24 .075 16. airlayh .50" 1.0023 .24 .075 18. roofgap	ic heat,
7 9.75 No. of layers (no. of layers and total width)	
1 .25 L-1 (no. of blocks and thickness for L-	.1\
8 9.75 (material and width)	•,
1 .50 L-2 (no. of blocks and thickness for L- 2 9.75 (material and width) 2 5.50 L-3 (no. of blocks and thickness for L-	·2)
2 9.75 (material and width)	,
2 5.50 L-3 (no. of blocks and thickness for L-	3)
18 9.00 (material and width)	•
2 .75 (material and width)	
2 12.00 L-4 (no. of blocks and thickness for L-	4)
18 9.00 (material and width)	•
11 .75 (material and width)	
2 .50 L-5 (no. of blocks and thickness for L-	5)
13 9.00 (material and width)	•
18 .75 (material and width)	
2 5.50 L-6 (no. of blocks and thickness for L-	6)
13 9.00 (material and width)	
15 .75 (material and width)	
1 .50 L-7 (no. of blocks and thickness for L-	7)
14 9.75 (material and width)	
.765 (inside film resistance)	

٠				•				•	•	•			-	-	Λ
ĺ	Ξ	Ξ	I	Ĭ	Ι	Ξ	Ī	Ī	Ţ	-	-	-	-		١.,١
•	*	•	•	٠	٠	٠	•	*	•	•	•	•	•	٠	٧.\
٠	٠	+	٠	•	٠	+	*	+	٠	٠	٠	٠	٠	+	V١
+	+	٠	٠	٠	٠	٠	+	٠	+	+	٠	٠	+	+	M
+	٠	٠	٠	٠	+	+	٠	+	٠	+	+	٠	٠	٠	[/\
٠	٠	+	+	+	+	+	+	٠	+	+	•	٠	+	٠	1.
		٠			Ĺ	i	i	Ĺ	Ĺ		i	Ė	i	_	LA.
	Ĺ	Ĺ	Ĺ	Ĺ	í	í	Ī	Ĭ	í	ī	Í	Ī	Ĭ	Ĭ.	۱,۰
	Ţ	-	7			•	-	7	7	7	-	-	-		۱.۱
•	•	•	•	•	*	*	٠	٠	٠	٠	٠	٠	•	*	۲.۱
•	+	+	+	٠	*	٠	+	*	+	+	+	٠	+	٠	M
•	•	•	•	_	-	-	-	•	-	-	•	•	-	-	۳
+	٠	٠	+	٠	+	٠	+	+	٠	٠	٠	+	+	+	١.
٠	٠	+	+	+	+	+	+	٠	٠	٠	٠	٠	٠		١.
٠	٠	+	+	+	+	+	+	٠	٠	+	+	+	٠		
+		+	+	٠	+	+	+	٠	٠	+	+	+	+		
		٠	٠			÷	i					÷			•
	Ī	Ĭ	Ĭ	Ξ	-	Ξ	-	Ξ	Ξ		Ξ	Ξ	÷	-	•.
7	•		•	Ĭ		•	•	•	•	•	•	•	•	•	٠
*	•	•	•	*	*	*	٠	٠	•	*	*	*	•	+	•
•	•	٠	+	*	+	+	+	٠	٠	٠	+	+	+	+	
٠	+	+	٠	+	+	+	٠	+	+	+	+	٠	+	+	
٠	٠	٠	٠	٠	+	+	٠	٠	+	٠	٠	٠	٠	+	
•	٠	٠	٠	+	+	+	+	٠	٠	٠	٠	+	+	+	
٠	٠	+	+	+	٠	+	٠	+	٠	٠	٠	+	٠	•	
٠	٠	•	+		+		٠	٠	٠	+	+	٠	+	٠	
	÷	٠	٠	i	٠	i							٠		•
	•		Ī		Ĭ	Ī	Ĭ	Ī	Ī	Ī	Ī	Ī			•
•	:				7	•		7	7		7	7	Ţ		٠.
•	•	•	•	•	•	*	•	*	•	*	•	•	•	•	٠
•	*	٠	•	•	+	٠	+	٠	+	+	+	٠	+	•	٠
•	•	•	*	٠	•	٠	+	*	+	+	+	+	•	٠	٠
٠	٠	٠	+	+	٠	٠	٠	٠	٠	٠	+	٠	٠	٠	
	٠	٠	+	٠	+	٠	٠	٠	٠	٠	٠	+	٠	٠	
٠	٠	٠	٠	٠	٠	٠	+	٠	٠	٠	٠	٠	+	٠	
٠	٠	٠	٠	٠.	٠	٠	٠	٠	٠	٠	+	٠	٠	٠	١.
٠	٠	٠	+	٠	+	٠	+	+	+	+	٠	+	٠	+	ľ
_															Ŀ
-	2	-		\leq	\leq	\leq		\subseteq		\subseteq			\leq		
,	1	1	7	7	7	7	7	7	7	7	77	~	7	Z_{λ}	
_	/,	۸,	//	/,	//	٠,	1,	//	٠,	/,	1	٨,	٨,		[:>
٠.	٨.	۸,	//	//	٨,	/,	/,	/,	/,	ď,	٠,	Λ,	Α,		
۲.	Λ,	1.	1	1	/	/	Æ.	/	1	/.	marin.	1	,		۲.
1	/	/.	/	/	~	/	Λ.	/	/.	/.	/	1	_	/	۴.
1	/	/	/	/	/	/	Arr.	/	/	1	, e	_	_	1	
^	,,,,,,,	/	/	/	/		/	_	/	/		_		1	
m	/	/			,,,,	/	1	/	/	1	_		1	1	: "
,,	/	_	/	/	, A.V.	1	_	/	_	/	1	_	_		2
_	1	'/	, and		_	1	1	1		· /	•	٠,	٠,		
_	1	1	٠,	1	•	<u>_</u>	•	//	•	1	٠,	1	٠,	1	
,,,	//	٠,	1	//	٠,	//	م. م	٠,	6	٠,,	٠,	٠,	1		
•	-	_	-	-	_	~	_	~	_	-	~	-	~	~	_

Layer 1 0.25"					
Blk 1 R 0.4414	shingle		wood		
Layer 2 0.50"	_	$\triangle \triangle \triangle$	0.0669	0.290	34.00
Blk 1 R 0.6228	wood	[]	attic		
Layer 3 5.50"		لنننا	0.6873	0.240	0.07
Blk 1 R 0.4573	roofgap				
Blk 2 R 6.8510	wood	<i>Y////</i>	drywalls		
Layer 4 12.00"			0.0877	0.275	50.00
•					
Blk 1 R 0.9977	rootgap		roofgap		
Blk 2 R 1.4550	attic		1.0023	0.240	0.07
Layer 5 0.50"					
Blk 1 R 1.6734	insuls		shingle		
B1k 2 R 0.0416	roofgap		0.0472	0.300	1.00
Layer 6 5.50"		[222]	insuls		
Blk 1 R18.4070	incule				
			0.0249	0.190	1.15
B1k 2 R 7.2407	woods				
Layer 7 0.50"		ESS	woods		
Blk 1 R 0.4748	drywalls		0.0633	0.275	27.00
I F R = 0.7650					

Figure 1.5 WALFERF Input for R-11 Floor Assembly

r11fir 0 0 1 18 .0669 .0263 5.	.29 .20 .24 .34	34.0 1.15 .075 2.0	2. 4. 16. 18.	wood insulation airlayh 6.00" rugnpad	(file name) (number of material descriptions) (conductance, specific heat, and density of materials)
4	7.00	No. of laye	ers	(no. of layers a	and total width)
2	6.00	L-1		(no. of blocks	and thickness for L-1)
16	6.25			(material and	width
2	.75			(material and	
2	3.50	L-2			
4	6.25	L-2		(110. OI DIOCKS	and thickness for L-2)
2	.75			(material and v	width)
4				(material and v	
1	.75	L-3		(no. of blocks	and thickness for L-3)
2	7.00			(material and v	width)
1	.50	L-4		(no. of blocks	and thickness for L-4)
18	7.00			(material and v	width)
	.760			(inside film res	istance)

Layer 1 6.00" Blk 1 R 0.1000 airlayh 6.00" Blk 2 R 7.4738 wood Layer 2 3.50" Blk. 1 R11.0900 insulation Blk 2 R 4.3597 wood Layer 3 0.75" Blk 1 R 0.9342 wood Layer 4 0.50" Blk 1 R 2.0833 rugnpad I F R = 0.7600insulation 0.0263 0.200 1.15 rugnpad 0.0200 0.340 2.00 0.0669 0.290 34.00

0.240

0.07

Figure 1.6 Foundation Cross—Section Modeled in the USCUG Finite Difference Program

Figure 1.7 Average Hourly Fluxes for Basement Foundations in Denver CO Calculated by the USCUG Program

are used in DOE-2 to generate correct zone weighting factors for either the living space (in the case of the slab-on-grade), basement, or crawl-space. For the data base work, we have modeled the underground layers with the maximum amount of thermal mass allowable in DOE-2 to produce suitably "heavy" weighting factors for the zones.

Since the USCUG fluxes are calculated at an assumed constant indoor temperature corresponding to the DOE-2 LOADS temperature, it was also necessary to calculate "U-effectives" for the underground surfaces which would be used in DOE-2 SYSTEMS simulation to correct the underground fluxes for variations in the indoor temperature. This flux correction is significant for unconditioned basements and crawl-spaces where the seasonal fluctuation in zone temperatures may be large. The "U-effectives" used in the modeling have been computed by regression analysis correlating the underground flux to the temperature differential between indoor and outdoor temperatures (Figure 1.8). This "U-effective" can be regarded as the steady-state U-value for an underground surface approximated as one-dimensional heat transfer from the space to the outside air. *

Building Prototypes

There are three building prototypes covered in the data base: detached one-story, attached two-story townhouse unit, and a low-rise two-story apartment module with an upper and lower unit. Table 1.1 gives the basic building dimensions. These are based on previous LBL prototypes (Huang et al. 1987, Turiel et al. 1986), except that the window area has been increased from 10% to 12% of floor area.

These prototype descriptions were chosen to represent typical current construction practices. Since the final data base is expressed as *component loads* normalized by U-value, floor area, or perimeter length, the dimensions in Table 1.1 should not critically affect the data, unless the surface-to-volume ratios for the prototype buildings are highly atypical. Previous sensitivity analysis of the voluntary energy guidelines data base have already indicated that, in residential buildings, component loads vary linearly with its physical dimension (Huang et al. 1985). †

^{*} The Underground Space Center and LBL have expanded on this approach in later research done for a Foundation Design Handbook. An improved procedure was developed to accounted for heat flux to the deep ground, as well as long-term seasonal fluctuations in the "U-effective" term. This was done by iterative simulations using the USCUG and DOE-2 programs (Shen et al. 1987).

[†] Component load is defined as the net annual contribution of each building component to the heating or cooling loads of the building. See Section 2 of this report for more discussion of this concept.

Figure 1.8 Regression Analysis of Steady—State U—values for Basement Foundations in One—Story Prototype for Denver CO

	Foundation measure	U-effective	intercept
0	FMO (uninsulated)	1.647	-3.87
•	FM1 (R-5 4 ft.)	.814	<u>-3.86</u>
0	FM2 (R-10 4 ft.)	. 654	-3.84
Δ	FM3 (R-5 8 ft.)	652	-3.66
×	FM4 (R-10 8 ft.)	.438	-3.56

Table 1.1 Prototype Building Dimensions

	House Prototype						
Building Component	Detached One-story	Attached Townhouse	Apartment module (2 units)				
Building floor area (ft²)	1540.0	1200.0	2400.0				
Building volume (ft ³)	12320.0	9600.0	19200.0				
Roof area (ft²)	1623.3	632.4	1264.9				
Ceiling area (ft ²)	1540.0	600.0	1200.0				
Gross wall area (ft ²)	1328.0	640.0	960.0				
Net wall area	1123.7	476.5	634.0				
Window area	184.8	144.0	288.0				
Door area	19.5	19.5	39.0				
Foundation floor area (ft ²)	1540.0	600.0	1200.0				
Perimeter length (ft)	166.0	40.0	60.0				

Although the surface areas and volumes of the three prototypes are based on the typical house designs shown in Section 3.1 of the voluntary energy guidelines technical report (Huang et al. 1987) and the LBL multi-family prototype report (Turiel et al. 1985), an average orientation was achieved for modeling purposes by apportioning the amounts of wall, roof, windows, and door equally in four cardinal directions. Similarly, average shading from two adjacent houses was approximated by modeling building shades with a 0.50 transmittance located 20 feet away on all four sides of the prototype houses. The intent of the simulation is to model a prototypical building under average, rather than typical, conditions. The non-directional orientation used here, while hardly typical, gives results that are averages of thousands of typical houses with various orientations.

Building Envelope

Insulation

All three prototype buildings were simulated with typical light-weight wood-frame construction, with sensitivity analyses done for heavy mass log and concrete block walls. The assumed ceiling, wall, and foundation construction assemblies are based on Section 3.3.1 of the voluntary energy guidelines technical support document, to which the reader should refer for more details.

Previous analysis of the voluntary energy guidelines data base showed that the relationship between the change in loads and in the steady-state U-value of ceilings and walls to be a smooth and nearly linear function (Huang et al. 1985). The approach taken in the current data base effort has been to simulate not all typical ceiling and wall assemblies, but only enough variations in assembly U-value to determine the function relating component loads to U-values. These regression functions were then used to calculate ceiling and wall component loads based on their U-values.

The WALFERF program was used to calculate response factors and steady-state U-values for typical ceiling and wall assemblies. These are listed in Table 1.2. DOE-2.1C simulations were done for four ceiling (R-0, 19, 38, and 49) and four light-frame wall assemblies (R-0, 11, 19, and 34). For ventilated crawl-space foundations, simulations were done for three floor assemblies (R-0, 11, and 30). Component loads for the intermediate assemblies were interpolated using the regression equations and U-values shown in Table 1.2. For the log and concrete block walls, DOE-2.1C simulations were done for all 15 wall assemblies listed in Table 1.2.

Three foundation types were modeled for every base city: slab-on-grade, heated and unheated basements, and ventilated crawl-space. Heated basement refers to unconditioned basement with insulated basement walls, while unheated basements refers to basements with insulation under the floor of the living space. Fully conditioned basements were not considered. For non-foundation energy conservation options, simulations were done assuming the most prevalent foundation type for each location. These are listed on column 4 of Table 1.7 later in this report.

The assumed foundation configurations are described in Section 3.3.1 of the voluntary energy guidelines technical support document (Huang et al. 1987), to which the reader should refer for details. Five levels of insulation were considered for the slab-on-grade and heated basement foundations, and three for the unheated basement and crawl-space foundations. These are listed in Table 1.3.

The heat fluxes through foundation underground surfaces were simulated using the USCUG two-dimensional finite-difference model and stored onto a large file. The USCUG flux file was then read into the DOE-2 input as a function call in the LOADS portion of that program (see sample DOE-2.1C input file in Appendix A).

The above-grade portion of the basement wall and the slab edge of the slab-on-grade have been included in the USCUG model to account for two-dimensional heat flows within the concrete and subsoil. Crawl-space walls, however, have been simulated as exterior walls using DOE-2.1C. To model the effects of ventilation, the crawl-space has been treated as a separate unconditioned zone with 1 ft² of vents per 30 ft.

Table 1.2 Steady-state U-values for Building Components calculated using the WALFERF program

Building	- ::-		U-values (Btu/hr·F·ft²)		Film	
Component	File	w/ film	w/o film		tances	
	name	resistance*	resistance	Interior	Exterior	
Ceilings						
R-0	r0roof	.247034	.321041	.76	.17	
R-7	r7roof	.092780	.101803	.76	.17	
R-11	r11roof	.068155	.072925	.76	.17	
R-19	r19roof	.046033	.048181	.76	.17	
R-22	r22roof	.038894	.040401	.76	.17	
R-30	r30roof	.029325	.030173	.76	.17	
R-38	r38roof	.023549	.024092	.76	.17	
R-49	r49roof	.018460	.018792	.76	.17	
R-60	r60roof	.015177	.015401	.76	.17	
Walls			.010+01	.70	.17	
R-0 wood-frame	r0rwall	.224129	277502	00	47	
R-7 " "	r7rwali	.105057	.277502	.68	.17	
R-11 " "	r11rwall		.115688	.68	.17	
R-13 " "		.088104	.095496	.68	.17	
R-19 " "	r13rwall	.069298	.073808	.68	.17	
R-27 " "	r19rwall	.059977	.063331	.68	.17	
R-34 " "	r27rwall	.042740	.044414	.68	.17	
	r34rwall	.032154	.033093	.68	.17	
4in. log wall	4log	.171422	.200619	.68	.17	
6in. " "	6log	.120122	.133764	.68	.17	
8in. " "	8log	.092455	.100330	.68	.17	
10in. " "	10log	.075146	.080267	.68	.17	
12in. " "	12log	.063296	.066891	.68	.17	
R-0 95 lb. concrete block	r0cb95	.295528	.394517	.68	.17	
R-5 " " " "	r5cb95	.135494	.153107	.68	.17	
R-10 " " " "	r10cb95	.080731	.086672		1	
R-15 " " " "	r15cb95	.057599		.68	.17	
R-30 " " " "	r30cb95		.060561	.68	.17	
	1300093	.030883	.031714	.68	.17	
R-0 120 lb. concrete block	r0cb120	.295527	.394516	.68	.17	
R-5 " " " "	r5cb120	.135493	.153107	.68	.17	
R-10 " " " "	r10cb120	.080731	.086672	.68	.17	
R-15 " " " "	r15cb120	.057599	.060561	.68	.17	
R-30 " " " "	r30cb120	.030883	.031714	.68	.17	
Floors						
R-0	rOffr	.213667	.316359	.76	.76	
R-11	r11flr	.069285	.077474	.76	.76	
R-19	r19flr	.047067	.050711	.76 .76	.76	
R-30	r30flr	.032783	.034511	.76 .76		
R-38	r38flr	.029522	.030917	.76 .76	.76	
R-49	r49fir	.029322	.020752		.76	
1173	143111	.020114	.020/52	.76	.76	

^{*} U-value used for matrix interpolations and regressions

Table 1.3. Foundation Insulation Levels

Floor	Level of Insulation					
measure code	Slab-on grade	Ventilated Crawl-space	Heated and unheated Basements			
FMO	Uninsulated	Uninsulated	Uninsulated			
FM1	R-5 2ft.	R-11 floor	R-5 4ft. basement wall (heated)			
FM2	R-10 2ft.	R-19 floor *	R-10 4ft. basement wall (heated)			
FM3	R-5 4ft.	R-30 floor	R-5 8 ft. basement wall (heated)			
FM4	R-10 4ft.	R-49 floor *	R-10 8ft. basement wall (heated)			
FM5			Uninsulated basement wall, R-11 floor (unheated)			
FM6			Uninsulated basement wall, R-30 floor (unheated)			

^{*} not used in generating data base

of perimeter. The ventilation air change rate was then modeled using the Sherman-Grimsrud model (Sherman et al. 1980).

Infiltration

The effects of infiltration on building heating and cooling loads have been simulated using the Sherman-Grimsrud model. This is a simplified physical model for air infiltration in residential buildings developed at LBL. "The only information necessary for the model is the geometry and leakage of the structure. The leakage quantities, expressed in terms of effective areas, are total leakage area and the leakage areas of the floor and ceiling. Weather parameters are mean wind speed, terrain class, and average temperature difference. The model separates the infiltration problem into two distinct parts: stack and wind-regimes. Each regime is treated separately; the transition between them is sharp. The model has been tested with data from several sites, differing in climate and construction methods." (Sherman et al. 1980).

Parametric simulations were made for each prototype building at three infiltration levels with fractional effective-leakage-areas of 0.0007, 0.0005, and 0.0003, (expressed as a fraction of the total floor area). These conditions can be regarded roughly as tight, average, and loose constructions. For all simulations, the buildings are assumed to be located in areas of low buildings and trees within 30 feet of the house in most directions. The corresponding inputs for the Sherman-Grimsrud model

are: Shielding-coefficient = 0.19, Terrain-parameter 1 = 0.85, and Terrain-parameter 2 = 0.20. Since the Sherman-Grimsrud model adjusts wind speeds for the height differential between the weather station and the local site, care has been taken to input the tower heights at which the wind speeds were taken. These may vary by month since the WYEC weather tapes used for the simulations are composed of monthly data taken from different years.

Window Characteristics

One of the primary objectives for the current data base effort was to develop more comprehensive coverage of various new glazing products and window designs. With the proliferation of new glazing products, notably low-emissivity coatings, the previous method of simulating typical single-, double-, and triple-pane windows has proven to be too restrictive and ambiguous.

As in the analysis of insulation measures, the approach used for the current data base is not to simulate all possible window conditions, but a wide range of glazing characteristics from which equations can be developed through multiple regression analysis that would relate window component loads to their physical properties, namely *U-values* and *shading coefficients*. Previous LBL research have demonstrated the versatility of this technique for analyzing the energy performance of windows in buildings (Johnson et al. 1983; Sullivan et al. 1985).

The use of shading coefficient to describe window solar gain is approximate, but the errors thereby introduced are tolerable, and more than offset by common understanding of this term, and the availability of such data from window manufacturers or research institutions. For example, the WINDOW 2.0 microcomputer program can be used to calculate shading coefficients for any glazing product given its glass optical properties and construction (Windows and Daylighting Group 1986).

For the data base, DOE-2 simulations were done for three levels of window U-value while keeping shading coefficient fixed at 1.00, equivalent to clear single-pane windows (Table 1.4). These first U-values correspond to the ASHRAE value for single-pane windows, the second to that for double-pane windows with ½ inch air gap, and the third to a super window more efficient than any currently available product. The three data points thus span the range of possible U-values to be found in window products in the foreseeable future.

To analyze the effect of solar gain through windows, four shading coefficients were considered: 1.00, 0.666, 0.333, and 0.000. The first two cover the range of

Table 1.4. Window U-values

		U-values	Outside	
Number of Panes	File name	w/outside film resistances *	w/o outside film resistances	film resistance
Single-pane	1-pane	1.100	1.353	.17
Double-pane	2-pane	0.490	0.535	.17
Multiple-pane	M-pane	0.098	0.100	.17

^{*} corresponds to ASHRAE U-values used for interpolations and regressions.

shading coefficients found in clear glass windows, and the second and third that found in some reflective glazings. The last shading coefficient corresponds to a totally opaque window, which is useful for diagnostic purposes. In the shading coefficient sensitivities, the glass U-value was held constant at 0.49, equivalent to double-pane windows.

Table 1.5 is shown for reference. It gives shading coefficients for common glazing products calculated using the WINDOW 2.0 program. These shading coefficients can be used with the multiple regression results to interpolate window solar component loads.

Table 1.5. Shading Coefficients for Typical Glazing Products calculated using the WINDOW 2.0 program

Glass Type	Number of panes	DOE-2 Glass Type Code	Shading Coefficient WINDOW 2.0 Adjusted	
туре	UI paries	Type Code	WINDOW 2.0	Adjusted
Regular	1	1	1.038	1.000
•	2	1	.944	.909
	3	1	.865	.833
Reflective	1	10	.370	.356
	2	10	.287	.276
	3	10	.262	.252
Heat Absorbing	1	6	.727	.700
	2	6	.609	.587
	3	6	.542	.522

^{*} Shading coefficient is defined as the solar heat gain ratio relative to that for a reference glazing material, generally double-strength clear sheet glass at normal incidence (ASHRAE 1985). Due to slight differences in the assumed optical properties of clear glass compared to DOE-2.1, the WINDOW 2.0 program calculated a shading coefficient slightly higher than 1.00 for the base case single-pane glazing. In Column 4, these values have been adjusted to yield 1.00 for the base case.

Building Operating Conditions

The assumed building operating conditions are taken from Section 4.0 of the voluntary energy guidelines technical document, to which the reader is referred for more details. The following describes only those operating conditions that have been modified from the earlier voluntary energy guidelines data base.

- 1. The heating thermostat setting has been changed to 70° F all day, with no night setback.
- The internal loads profile has been changed from that shown in Table 4.4b of the voluntary energy guidelines technical document to that developed by the California Energy Commission for their Title 24 Residential Energy Standards (Figure 1.9 and Table 1.6).

Table 1.6. Internal Loads Schedule

Hour of day	Internal Ioad (Btu)	Hour of day	Internal load (Btu)
1	1346	13	2525
2	1234	14	1683
3	1178	15	1571
4	1178	16	1739
5	1178	17	3198
6	1459	18	3591
7	2132	19	3591
8	3310	20	2917
9	3142	21	2805
10	3366	22	3086
11:	3310	23	2469
12	2581	24	1215

The new profile shows an internal loads peak in the evening due to cooking loads, plus a smaller peak at breakfast time. Although the new internal loads profile has not been validated, we believe it is more typical than the previous profile used by LBL, which showed the highest peak at 8 a.m., and a secondary peak at 11 p.m.

3. A time of day schedule has been added to the building ventilation that assumes occupants will not open windows for natural ventilation between 11 p.m. and 7 a.m. even if it is desirable to do so. If the windows are open at 11 p.m., they are

assumed open through the night unless indoor temperatures drop below 70° F. Windows are assumed closed below that temperature to avoid picking up spurious heating loads. The venting algorithm has also been changed from a fixed air change rate to a variable rate calculated using the Sherman-Grimsrud residential infiltration model. It is assumed that opened windows have an "effective-leakage-area" only 30% of the total glazing area, due to obstructions and physical constraints that limit maximum openable area to half of the window area. *

Figure 1.9 Internal loads profile for a 1540 ft² 1—Story prototype house

^{*} The natural ventilation algorithm is an enhancement to the DOE-2.1C program not available on the current public release version of DOE-2.1C. However, it will be included in future release versions.

Building Locations

The base cities included in the data base are the 45 cities used for the voluntary energy guidelines data base. For this current work, however, simulations were done using WYEC (Weather Year for Energy Calculations) weather tapes (Crow 1981). These weather data are judged to be more reliable for estimating average annual energy consumptions than the TRY weather tapes used for the voluntary energy guidelines data base. For the twelve locations for which WYEC weather tapes were unavailable, TMY weather tapes were used (Table 1.7).

Table 1.7 Building locations for residential data base

Building	Weather tape		Prevalent		
location	WYEC	TMY	foundation type		
Albuquerque NM	Χ		Slab		
Atlanta GA	X		Slab		
Birmingham AL	X		Slab		
Bismarck ND	X		Basement		
Boise ID	X		Basement		
Boston MA	X		Basement		
Brownsville TX	X		Slab		
Buffalo NY		X	Basement		
Burlington VT		X	Basement		
Charleston SC	X		Crawl-space		
Cheyenne WY	X		Basement		
Chicago IL	X		Basement		
Cincinnati OH		X	Basement		
Denver CO	X		Basement		
El Paso TX	X		Slab		
Fort Worth TX	X		Slab		
Fresno CA		X	Slab		
Great Falls MO	X		Basement		
Honolulu HA	• •	X	Slab		
Jacksonville FL		X	Slab		
Juneau AK		X	Basement		
Kansas City MO	X	^	Basement		
Lake Charles LA	X		Slab		
Las Vegas NV	X		Slab		
Los Angeles CA	X		Slab		
Medford OR	X		Crawl-space .		
Memphis TN	~	X	Crawl-space Crawl-space		
Miami FL	X	^	Slab		
Minneapolis MN	x		Basement		
Nashville TN	x		Slab		
New York NY	<u>x</u>				
Oklahoma City OK	x		Basement Slab		
Omaha NB	x		Basement		
Philadelphia PA	^	X	Basement		
Phoenix AZ	X	^	Slab		
Pittsburgh PA	<u>x</u>				
Portland ME	X		Basement		
Portland OR	x		Basement Crawl space		
Reno NV	^	X	· Crawl-space Slab		
	x	^			
Salt Lake City UT			Basement		
San Antonio TX	X	V	Slab		
San Diego CA		X	Slab		
San Francisco CA	V	X	Slab		
Seattle CA	X		Basement		
Washington DC	X		Basement		

ANALYSIS OF BUILDING HEATING AND COOLING LOADS

Component Loads

The new residential data base utilizes the concept of component loads developed through previous analysis of the voluntary energy guidelines data base. Component loads are defined as the net annual contribution of each building component to the heating or cooling loads of the building (Huang et al. 1985). They are calculated in a two-step process. First, Δ loads are calculated for different conservation levels in each component (ceiling, wall, window, etc.) relative to an arbitrarily chosen base case. Regression analysis is then done correlating these Δ loads to key physical parameters associated with each building component. For insulation, the parameter used is the steady-state conductance of the ceiling, wall, foundation, or window; for infiltration, the parameter is the effective-leakage-area; and for window solar gain, the solar aperture (shading coefficient * window area).

At the y-intercept of the regression curve, the component load is assumed to be zero. This corresponds to zero conductance for insulation, zero leakage-area for infiltration, and zero solar aperture for the solar gain measures. The component loads for the simulated cases are thus only a function of the regression curve:

Component Load_{ceilings,walls,floors} =
$$f$$
 (conductance) [1]

Component Load_{infiltration} =
$$f$$
 (effective-leakage-area) [2]

Component Load_{solar gain} =
$$f$$
 (solar aperture) [3]

The component loads thus calculated can be used to estimate the total loads for variations of the prototype house:

- + Component Loadwall * UAwall)
- + (Component Loadwindow * UAwindow)
- + (Component Load_{solar gain} * Window solar aperture)
- + (Component Load_{foundation} * UA_{foundation})
- + (Component Load_{infilt} * Effective-leakage-area)
- + Residual Load

The *residual load* is the difference between the total loads computed by this method and those from a DOE-2 simulation. They represent the net effect of internal loads and interactions not included in the component regression analyses.

To calculate Δ loads for insulation measures, 30 DOE-2 simulations were done for each prototype building in the 45 locations. Table 2.1 describes the thermal characteristics of the house for each parametric simulation. The arrows on the table indicate which simulations were used to derive Δ loads for successive insulation levels. These simulations are identical except for the change in insulation level in a single component. Cumulative Δ loads are derived by summing successive Δ loads, and are actually composite values that assume all building components are thermally tightened in unison. For example, the Δ load from R-0 to R-38 ceiling is the sum of the Δ load from R-0 to R-19 ceiling on a loose uninsulated house, plus the Δ load from R-19 to R-38 ceiling on a moderately insulated house. This procedure produces Δ loads that are most representative of typical construction practices.

Ceiling and Wall Measures

The data base includes Δ loads for the following ceiling and wall insulation measures: R-0, R-19, R-38, and R-60 ceilings, and R-0, R-11, R-19, and R-34 light-frame walls. A quadratic curve fit was developed through regression analysis, using the U-value of the ceiling or wall as the independent variable, and its area as a scalar:

Component Load =
$$A * (U * Coef_{linear} + U^2 * Coef_{ouadratic})$$
 [5]

Sample regression plots for four cities are shown in Figures 2.1 through 2.4.

The computed and interpolated total Δ loads, and component loads per ft², are shown on the tables in Section 3.A. The regression coefficients used for the interpolated values are listed on the tables directly below the Δ and component loads. "Slope" is the linear coefficient and in units of degree-days. "Curve" is the quadratic coefficient and in units of (degree day)²-ft²/Btu. The total component load of the ceiling or wall can be calculated as follows:

Component Load (Btu) =
$$A * (U * Slope * 24 + U^2 * Curve * 576)$$
 [6]

For example, for ceiling heating loads in Albuquerque the table in Section 3.A gives a "slope" of 4468.29 degree-days, and a "curve" of -111.14 degree day²·ft²/Btu. Since the U-value of a R-0 ceiling is .24703, the component heating load for an

Table 2.1 List of DOE-2.1C Runs for Parametric Analysis of Insulation Measures

(\downarrow 's indicate runs used to derive Δ loads for incremental measures)

	No.			Fou	ndation mea	sures	Effect.	····
Option	of	Ceiling	Wall	 	_		Leak.	Window
code	runs	H-value	R-value	Slab	Basement	Crawl	frac.	U-value
A00	1	R-0↓	R-0	FMO	prevalent fo	und.†	.0007	1.35
C00	1	R-19	R-0 ↓	FMC	prevalent fo	ound.	.0007	1.35
D00	1	R-19	R-11	FMC	prevalent fo	ound.	.0007	1.35
D01	3	R-19	R-11	FMO↓	$FMO_{oldsymbol{\downarrow}}$	$FM0_{oldsymbol{\downarrow}}$.0005	1.35
E01	3	R-19	R-11	FM1	FM1	FM1	.0005	1.35 _{].}
F02	1	R-19↓	R-11	FM1 prevalent found.			.0005	.535
H09	1	R-38	R-11↓	FM1	prevalent fo	und.	.0005	.535
106	3	R-38	R-19	FM1↓	FM1↓	FM1	.0005	.535
J01	3	R-38	R-19	FM2	FM2	FM2	.0005 ₁	.535
M02	1	R-38	R-19		FM5		.0005	.535
N09	1	R-38	R-19		FM6↓	j	.0005	.535
J51	1	R-38↓	R-19	FM2 prevalent found.		.0003	.535	
L60	1	R-60	R-19↓	FM2	prevalent fo	und.	.0003	.535
N55	3	R-60	R-34	FM2	$ extsf{FM2}_{oldsymbol{\downarrow}}$	FM2 ₁	.0003	.535
O54	2	R-60	R-34	FM3 _↓	FM3 _↓	FM3	.0003	.535
P53	3	R-60	R-34	FM4	FM4	FM4	.0003	.535 ₁
Q52	1	R-60	R-34	FM4	prevalent fo	und.	.0003	.100

Total = 30 runs

[†] prevalent foundation based on NAHB survey of foundation types in each city and listed in Table 1.6; See Table 1.3 for explanation of foundation code.

Figure 2.1 Correlations of Δ Ceiling Heating Loads to U-values

Figure 2.2 Correlations of Δ Ceiling Cooling Loads to U-values

Figure 2.3 Correlations of Δ Wall Heating Loads to U-values

Figure 2.4 Correlations of Δ Wall Cooling Loads to U-values

uninsulated ceiling in a 1540 ft² house would be:

or

To analyze the effect of mass walls on energy use, simulations were done in the one-story prototype for five thicknesses of log walls (4, 6, 8, 10, and 12 inches), and five levels of interior insulation (R-0, R-5, R-10, R-15, R-30) in both 95 lb. and 120 lb. concrete block walls. For log and concrete block walls with less than R-10 insulation, the house was simulated with R-19 ceiling, R-11 wall, uninsulated foundation, single-pane windows, and 0.0005 effective-leakage-fraction. For concrete block walls above R-10, the house was simulated with R-38 ceiling, R-19 wall, and R-10 foundation insulation, double-pane windows, and 0.0005 effective-leakage-fraction. Mass walls with exterior insulation were not simulated.

A quadratic curve fit was derived through regression analysis, using the steady-state U-value of the mass wall as the independent variable, and the wall area as a scalar. In addition to the two regression coefficients, an intercept was also calculated for the Δ load in kBtu/ft² from a light-frame wall to the uninsulated mass wall. The following equation defines the component load for a mass wall:

Component Load (Btu) = Area * (U * Slope *
$$24 + U^2$$
 * Curve * 576)
$$+ Area * Intercept * $10^3$$$

Two typical regression plots are shown in Figures 2.5 through 2.8. These indicate the Δ loads between light-frame and mass walls of the same steady-state U-value, as well as the nonlinearity in cooling Δ loads compared to U-values for mass walls in cities with large daily temperature swings such as Fresno.

The Δ and component loads and regression coefficients for the three mass wall types are presented in Section 3.B. The format of the tables are identical to those in Section 3.A and explained earlier in this section.

Foundation Insulation Measures

The data base includes simulation results for five insulation levels in the slab-on-grade (uninsulated, R-5 extending down 2 ft. and 4 ft., and R-10 extending down 2 ft. and 4 ft.), and the heated basement (uninsulated, R-5 extending down 4 ft. and 8 ft.), and R-10 extending down 4 ft. and 8 ft.), three in the unheated basement (uninsulated,

Figure 2.5 Correlation of Δ Heating Loads to U-values for Mass Walls for Fresno CA

Figure 2.6 Correlation of Δ Cooling Loads to U-values for Mass Walls for Fresno CA

Legend

- <u>Wood-frame R-34,19,11,0</u>
- 951b ConcBlock R-30,15,10,5,0
- 1201b ConcBlock R-30,15,10,5,0
- O Log 12,10,8,6,4 in

Figure 2.7 Correlation of Δ Heating Loads to U-values for Mass Walls for Buffalo NY

Figure 2.8 Correlation of Δ Cooling Loads to U-values for Mass Walls for Miami FL

Legend

- <u>Wood-frame R-34,19,11,0</u>
- □ 951b ConcBlock R-30,15,10,5,0
- 120lb ConcBlock R-30,15,10,5,0
- O Log 12,10,8,6,4 in

R-11, and R-30 under the floor), and four in the vented crawl-space foundation (uninsulated, R-11, R-19, and R-38 under the floor).

For the slab and heated basement conservation measures, quadratic curve fits were derived through regression analyses, using steady-state "U-effectives" from the USCUG model as the independent variable and the perimeter length as a scalar. These correlations are approximate due to the complex heat flow paths and thermal storage effects of the foundation and subsoil (Figures 2.9 through 2.12). As a result, we did not use the quadratic coefficients in the data base, but stored instead the component loads for each individual measure, normalized by the *perimeter length* of the prototype buildings. These appear on the tables in Section 3.A in units of kBtu's per perimeter foot. The regressions, however, were needed to determine the y-intercept when the "U-effective" is 0. At this condition, the foundation component load was assumed to be zero.

For under-floor insulation measures in the unheated basement and crawl space foundations, quadratic curve fits were derived through regression analyses, using the floor U-value as the independent variable and the floor area as a scalar (Figures 2.13 to 2.16). Although the Δ loads are nonlinear due to interactions between the conditioned space and the basement or crawl space, they vary monotonically with floor U-value and can be reduced to regression coefficients. Equation 6 is used to estimate component loads for these foundation measures from the coefficients. The Δ and component loads and regression coefficients are given in Section 3.A in the same format as for ceilings and walls.

The differences in energy use between building foundation type is indicated by the "intercepts" in Section 3.A. These are given relative to the prevailing foundation type in each location (Table 1.7) and in units of kBtu's per perimeter feet for the slab and heated basement and per ft^2 of floor area for the unheated basement and crawl space foundations. These can be regarded as Δ loads not accounted for by the calculated building k-value.

Infiltration

The data base includes simulation results for the following three levels of infiltration: 0.0007, 0.0005, and 0.0003 effective-leakage-fractions (ELF). A quadratic curve fit was computed through regression analysis, using .001 ELF of the house as the independent variable, and the floor area as a scalar:

Comp. Load (kBtu) = Area * (ELF *
$$10^3$$
 * Slope + ELF² * 10^6 * Curve) [9]

Figure 2.9 Correlation of Δ Slab Foundation Heating Loads to Effective U-values

Figure 2.10 Correlation of Δ Slab Foundation Cooling Loads to Effective U-values

Figure 2.11 Correlation of Δ Heated Basement Heating Loads to Effective U-values

Figure 2.12 Correlation of Δ Heated Basement Cooling Loads to Effective U-values

Figure 2.13 Correlation of Δ Unheated Basement Heating Loads to Effective U—values

Figure 2.14 Correlation of Δ Unheated Basement Cooling Loads to Effective U-values

Figure 2.15 Correlation of Δ Crawl Foundation Heating Loads to Floor U—values

Figure 2.16 Correlation of Δ Crawl Foundation Cooling Loads to Floor U-values

Sample plots of these regressions for four cities are shown in Figures 2.17 through 2.18. A function has also been added to the DOE-2.1C input to calculate the average infiltration air change rate for the three effective-leakage-fractions for each location and prototype.

The tables in Section 3 give the total Δ loads and component loads per ft² of floor due to infiltration, and the coefficients from the regression analyses. "Slope" is the linear regression coefficient in units of kBtu per .001 ELF, "Curve" is the quadratic coefficient in units of kBtu per (.001 ELF)².

The numbers in parenthesis next to the effective-leakage-fractions are the corresponding average yearly infiltration rates in *ach* (air changes/hour). As shown in Figure 2.19, these are location-specific, but linearly dependent on effective-leakage-fraction within a particular location.

Windows

To analyze the impact on building loads due to changes in window U-value, three simulations were done for each prototype house and base city for 12% equally distributed windows with a constant shading coefficient of 1.00, and window U-values of 1.10, 0.49, and 0.10 (see Table 1.4). The assumed thermal integrity for the rest of the building is indicated in Table 2.1. Quadratic regressions were done, using the U-value of the window as the independent variable, and its area as a scalar:

Comp. Load (Btu) = Area*(
$$U_{wind}$$
 *Slope * 24 + U_{wind}^2 * Curve * 576) [10]

Sample regression plots for four cities are shown in Figures 2.20 and 2.21. The Δ and component loads for window conduction per ft² are shown under "Window Uvalue" on the tables in Section 3.A. The loads for triple-pane windows are interpolated between double-pane and the R-10 multiple-pane windows. These loads are only for conductive losses and do not include the effects of solar gain through windows.

To analyze the impact on building loads due to variations in window solar gain, a set of 52 parametric simulations were designed for the one-story prototype in each base city (Table 2.2). Twelve of these simulations cover shading coefficients of 1.00, 0.67, 0.33, and 0.00 for 8%, 12%, and 20% window areas (of floor area) equally distributed in four cardinal orientations. Forty simulations cover various window configurations ranging from 1% to 14% glazing area in one orientation, and from 8% to 20% total glazing area.

Figure 2.17 Correlation of Δ Infiltration Heating Loads to Effective—leakage—fractions

Figure 2.18 Correlation of Δ Infiltration Cooling Loads to Effective—leakage—fractions

Figure 2.19 Correlation of Average Winter Air—change Rates to Effective Leakage—Fractions

Figure 2.20 Correlation of Δ Window Conduction Heating Loads to Window U-values

Figure 2.21 Correlation of Δ Window Conduction Cooling Loads to Window U-values

Table 2.2 Parametric Analysis of Window Solar Gain Conditions (* = short parametric set done for 34 cities)

Run	Shading		Winc	low/Floor Ra	tio (e/)	
code	Coefficient	North	East	South	West	Total
	fficient simulatio		Last	Coulii	11031	iolai
1 A north	1.000	2.00	2.00	2.00	2.00	8.00 *
2 A north	1.000	3.00	3.00	3.00	3.00	12.00 *
3 A north	1.000	5.00	5.00	5.00	5.00	20.00 *
1 B north	0.666	2.00	2.00	2.00	2.00	8.00 *
2 B north	0.666	3.00	3.00	3.00	3.00	12.00 *
3 B north	0.666	5.00	5.00	5.00	5.00	20.00
1 C north	0.333	2.00	2.00	2.00	2.00	8.00
2 C north	0.333	3.00	3.00	3.00	3.00	12.00 *
3 C north	0.333	5.00	5.00	5.00	5.00	20.00
1 D north	0.000	2.00	2.00	2.00	2.00	8.00 *
2 D north	0.000	3.00	3.00	3.00	3.00	12.00
3 D north	0.000	5.00	5.00	5.00	5.00	20.00 *
	ntation simulatio		3.00	3.00	3.00	20.00
4 A north	1.000	0.00	2.67	2.67	2.67	8.00
5 A north	1.000	4.00	1.33	1.33	1.33	8.00 *
6 A north	1.000	4.00	0.00	4.00	0.00	8.00
7 A north	1.000	0.00	4.00	4.00	4.00	12.00 *
8 A north	1.000	6.00	2.00	2.00	2.00	12.00 *
9 A north	1.000	6.00	0.00	6.00	0.00	12.00
10 A north		1.00	6.33	6.33	6.33	20.00
3	1.000	9.00		3.67	3.67	20.00
11 A north	1.000	9.00	3.67 1.00	9.00	1.00	20.00 *
12 A north 13 A north	1.000 1.000	14.00	2.00	2.00	2.00	20.00 *
			2.67	2.67	0.00	
4 A east	1.000	2.67		1.33	4.00	8.00 8.00 *
5 A east	1.000	1.33	1.33			
6 A east	1.000	0.00	4.00	0.00	4.00	8.00 12.00 *
7 A east	1.000	4.00 2.00	4.00 2.00	4.00 2.00	0.00 6.00	12.00
8 A east	1.000 1.000	0.00	6.00	0.00	6.00	12.00
9 A east		6.33	6.33	6.33	1.00	20.00
10 A east	1.000	3.67	3.67	3.67	9.00	20.00
11 A east	1.000				9.00	20.00 *
12 A east	1.000	1.00	9.00	1.00 2.00	14.00	20.00 *
13 A east	1.000	2.00	2.00			
4 A south	1.000	2.67	2.67	0.00	2.67	8.00 8.00 *
5 A south	1.000	1.33	1.33	4.00	1.33	8.00
6 A south	1.000	4.00	0.00	4.00	0.00 4.00	12.00 *
7 A south	1.000	4.00	4.00	0.00 6.00	2.00	12.00 *
8 A south	1.000	2.00	2.00			12.00
9 A south	1.000	6.00	0.00	6.00	0.00 6.33	20.00
10 A south	1.000	6.33	6.33	1.00 9.00	3.67	20.00
11 A south	1.000	3.67	3.67	9.00	1.00	20.00
12 A south	1.000	9.00	1.00 2.00	14.00	2.00	20.00 *
13 A south	1.000	2.00		2.67	2.67	8.00
4 A west	1.000	2.67	0.00		1.33	8.00 *
5 A west	1.000	1.33	4.00 4.00	1.33 0.00	4.00	8.00 8.00
6 A west	1.000	0.00		4.00	4.00	12.00 *
7 A west	1.000	4.00	0.00	2.00	2.00	12.00
8 A west	1.000	2.00	6.00		6.00	12.00
9 A west	1.000	0.00	6.00	0.00		20.00
10 A west	1.000	6.33	1.00	6.33	6.33	20.00
11 A west	1.000	3.67	9.00	3.67	3.67	20.00
12 A west	1.000	1.00	9.00	1.00 2.00	9.00 2.00	20.00 *
13 A west	1.000	2.00	14.00	2.00	۷.00	20.00

Analysis of the sensitivity results indicated that a quadratic multi-variant regression equation using five independent parameters produced reliable correlations with R²'s typically above .999 for heating, and .997 for cooling loads, except for locations with insignificant loads. Tables 2.3 and 2.4 show sample regression results for heating loads in Albuquerque and cooling loads in Phoenix. Because of the high reliability of this regression technique, the full set of 52 simulations were done for only 11 cities, and an abbreviated set of 25 done for the remaining 34 cities. *

The regression methodology reduces the DOE-2 test results to five coefficients, four related to the window solar aperture (shading coefficient * area) in each orientation, and one to the total solar gain into the house.

$$A = \sum_{i=1}^{4} \alpha_{i} * (area_{i}*shading coefficient_{i})$$
 [11]

Load_{window solar} =
$$A^*(\beta^*A + 1) + Load_{0 \text{ solar aperture}}$$

The first term (A) is the total solar gain into the house. The second term ($\beta^*A + 1$) is the "solar usability" expressed as a linear function of the total solar gain (A) and relative to 1 for a house with zero solar aperture. The linear relationship between usability and solar gain is based on analysis of test simulations that indicate *dload/dsolar aperture* of houses with equally distributed windows is roughly linear to the total solar aperture (Figure 2.22).

The "solar usability" term is not needed for estimating cooling loads, since a simple multi-linear regression produces good correlations to the DOE-2 Δ loads for changes in window orientation and shading coefficient (compare Figure 2.23 to Figure 2.24). For heating, however, Δ loads due to increased solar gain varies with the total amount of solar gain entering the house. As the solar gain increases, its usability decreases since increasing amounts are vented or occur on days when the house has no heating load. As a result, a simple multi-linear correlation similar to the one in Figure 2.23 produces significant scatter with a standard error of 0.7MBtu in Albuquerque (Figure 2.25). Adding the "solar usability" term estimated as a linear function of total solar gain improves the regression and reduces the standard error to 0.12MBtu (Figure 2.26).

The window solar gain coefficients are listed in the tables in Section 3.B below the mass wall regression results. The units for the four α are kBtu/ft², while the β

^{*} The 11 cities correspond to the Window Sensitivity Base Cities selected out the 45 for the voluntary guidelines data base (see Section 5.5 of Huang et al. 1987). The cities are: Albuquerque, Atlanta, Chicago, Denver, Lake Charles, Miami, Minneapolis, New York, Phoenix, San Francisco, and Seattle.

Table 2.3 Window Regression Analysis for Denver Heating Loads

Denve	er CO	Heat						
	Shac	. W	indow area	(sq.ft.)	Del Load	Predicted	
Total	Coef	• North	East	South	West	(MBtu)	(MBtu)	
8.002	1.000	30.8	3Ø.8	30.8	3Ø.8	-12.697	-12.574	
12.00%	1.000		46.2	46.2	46.2	-17.690	-17.605	
20.00%			77.0	77.8	77.8		-25.259	
8.00%			30.8	30.8	3Ø.8	-8.837		
12.00%			46.2	46.2	46.2	-12.62Ø	-8.766	
20.00%			77.Ø	77.Ø	77.Ø		-12.563	
8.00%			30.8	30.8		-19.277	-19.089	
12.00%					30.8	-4.587	-4.613	
			46.2	46.2	46.2	-6.7 <i>00</i>	-6.734	
20.00%			77.Ø	77.0	77.Ø	-10.667	-1Ø.7Ø9	
8.00%			30.8	30.8	30.8	Ø37	105	
12.00%			46.2	46.2	46.2	.øøø	105	
20.00%			77.Ø	77.Ø	77.Ø	Ø37	105	
8.00%			41.1	41.1	41.1	-14.697	-14.554	ü
8.00%	1.000	61.6	20.5	20.5	20.5	-10.557	-10.481	
8.00%	1.000	61.6	.ø	61.6	.ø	-13.077	-13.375	
12.00%	1.000	ı .ø	61.6	61.6	61.6	-2Ø.15Ø	-20.082	
12.88%			30.8	30.8	30.8	-14.92Ø	-14.875	
12.00X			.ø	92.4	.ø	-18.28ø	-18.620	
20.00%			97.5	97.5	97.5	-27.657	-27.301	
20.00%			56.5	56.5	56.5	-22.937		
2Ø.ØØX			15.4	138.6	15.4		-22.766	
						-26.137	-26.125	
20.00%			30.8	30.8	30.8	-18.987	-19.015	
8.00%			41.1	.0	41.1	-10.187	-9.988	
8.00X			20.5	61.6	20.5	-15.007	-15.060	
12.00%			61.6	. Ø	61.6	-14.18Ø	-14.1Ø8	
12.00%			3Ø.8	92.4	3Ø.8	-20.630	-20.695	
20.00%			97.5	15.4	97.5	-21.857	-22.Ø29	
2Ø.ØØ%			56.5	138.6	56.5	-28.827	-27.766	
20.00%			30.8	215.6	3Ø.8	-29.707	-29.885	
8.00%	1.000	41.1	.Ø	41.1	41.1	-12.527	-12.625	
8.00%	1.000	20.5	61.6	20.5	20.5	-12.667	-12.523	
8.00%	1.000		61.6	.ø	61.6	-12.827	-11.755	
12.00%	1.000		. Ø	61.6	61.6	-17.460	-17.67Ø	
12.00%			92.4	30.8	30.8	-17.500	-17.54Ø	
12.00%			92.4	.ø	92.4	-16.430	-16.55Ø	
20.00%			15.4	97.5	97.5	-25.337	-25.315	
20.00%			138.6	56.5	56.5	-25.207	-25.202	
20.00%		15.4	138.6	15.4	138.6	-24.017		
							-24.321	
20.00%			215.6	30.8	30.8	-24.587	-25.13Ø	
8.00%			41.1	41.1	.ø	-13.057	-13.868	
8.00%	1.000		20.5	20.5	61.6	-12.217	-12.Ø82	
12.00X			61.6	61.6	.ø	-18.19Ø	-18.223	
12.00%	1.000		30.8	30.8	92.4	-16.93Ø	-16.973	
20.00%	1.000		97.5	97.5	15:4	-26.847	-25.79Ø	
20.00%	1.000	56.5	56.5	56.5	138.6	-24.767	-24.781	
20.00%	1.000		30.8	30.8	215.6	-23.657	-23.968	
Alphas (KB	tu/sf}		-112.636 -1	95.523	-98.823	Beta= .88	810 Inter=	18458
•			fail= #	flag=				
			Msg = .9993	32 St.	andard Erre	or (MRtii) w	182212	

Rsq = .999486 RMsq = .999332 Standard Error (MBtu) = .182212

Table 2.4 Window Regression Analysis for Phoenix Cooling Loads

						** .		
Phoeni	Iu A7	C = - 1						
i noen i		Cool						
T.A.1	Shad	. W	indow area			Del Load	Predicted	
Total	Coef	North	East	South	Vest	(MBtu)	(MBtu)	
3.00%	1.000	30.8	3Ø.8	30.8	3Ø.8	8.253	8.190	
12.00%	1.000	46.2	46.2	46.2	46.2	12.340	12.410	
20.00%	1.000	77.Ø	77.Ø	77.8	77.Ø	20.753		
8.00%	.666	30.8	30.8	30.8	30.8		21.059	
12.00%	.666	46.2	46.2	46.2		5.393	5.409	
2Ø.ØØX	.666	77.Ø	77.Ø		46.2	8.120	8.181	
8.00%	.333	77.20		77.Ø	77.ø	13.403	13.818	
		30.8	30.8	30.8	30.8	2.683	. 2.667	
12.00%	.333	46.2	46.2	46.2	46.2	3.99Ø	4.034	
20.00%	.333	77.Ø	77.Ø	77.Ø	77.Ø	6.513	6.791	
8.00%	.øøø	3Ø.8	3Ø.8	30.8	30.8	.003	044	
12.00%	.øøø	46.2	46.2	46.2	46.2	. DØØ		
20.00%	.000	77.Ø	77.0	77.8	77.8		044	
8.00%	1.000	.ø	41.1	41.1	41.1	.003	044	
8.00%	1.000	61.6	20.5			9.403	9.532	
8.00%	1.000	61.6		20.5	20.5	7.083	6.855	
			.ø	61.6	.Ø	6.113	6.305	
12.00%	1.000	.ø	61.6	61.6	61.6	14.13Ø	14.459	
12.00%	1.000	92.4	3Ø.8	3 0.8	30.8	10.670	10.378	
12.00%	1.000	92.4	.ø	92.4	.ø	9.290	9.542	
2Ø.ØØ%	1.000	15.4	97.5	97.5	97.5	23.383		
20.00%	1.000	138.6	56.5	56.5	56.5	10 222	23.882	
20.00%	1.000	138.6	15.4	138.6	15.4	18.233	18.264	
20.00%	1.000	215.6				17.053	17.117	
3.00%	1.000	41.1	30.8	30.8	30.8	15.363	14.810	
			41.1	.ø	41.1	8.523	8.112	
8.00%	1.003	20.5	2Ø.5	61.6	20.5	8.003	8.267	
8.00%	1.000	61.6	.ø	61.6	.ø	6.113	6.305	
12.00%	1.000	61.6	61.6	.ø	61.6	12.710	12.292	
12.00%	1.000	3Ø.8	30.8	92.4	30.8	12.070	12.528	
12.00%	1.000	92.4	. Ø	92.4	.ø	9.290		
20.00%	1.000	97.5	97.5	15.4	97.5	20.520	9.542	
20.00%	1.000	56.5	56.5	138.6	57.5	20.903	20.896	
20.00%	1.000	138.6			56.5	20.873	21.221	
20.00%			15.4	138.6	15.4	17.Ø53	17.117	
	1.000	3ø.8	3Ø.8	215.6	30.8	23.033	21.424	
8.00%	1.030	41.1	41.1	41.1	.ø	7.443	7.438	
8.00%	1.000	20.5	20.5	2Ø.5	61.6	9.023	8.944	
8.00%	1.000	.ø	61.6	.ø	61.6	10.363	10.088	
12.00%	1.000	61.6	61.6	61.6	.ø	11.190		
12.00%	1.000	30.8	30.8	30.8	92.4	11.130	11.265	
12.00%	1.000	.ø	92.4		22.4	13.570	13.561	
2Ø.ØØX	1.000	97.5		.ø	32.4	15.50Ø	15.31Ø	
		3/.5	97.5	97.5	15.4	19.193	19.483	
20.00%	1.000	56.5	56.5	56.5	138.6	22.353	22.643	
20.00%	1.000	15.4	138.6	15.4	138.6	24.703	25.Ø57	
2Ø.Ø0%	1.000	30.8	3Ø.8	3Ø.8	215.6	25.283	24.636	
8.00%	1.000	41.1	. Ø	41.1	41.1	7.623	7.682	
8.00%	1.000	20.5	61.6	20.5	20.5			
8.00%	1.000	.ø	61.6	.ø	61.6	8.873	8.698	
12.00X	1.000	61.6	01.0 .	61.6		10.363	10.088	
12.00%			.ø		61.6	11.490	11.637	
	1.000	30.8	92.4	3Ø.8	30.8	13.300	13.186	
12.00%	1.000	. ø	92.4	. Ø	92.4	15.50Ø	15.310	
20.00%	1.000	97.5	15.4	97.5	97.5	19.833	19.994	
2Ø.ØØ%	1.000	56.·5	138.6	56.5	56.5	21.773	22.127	
20.00%	1.000	15.4	138.6	15.4	138.6	24.703	25.057	
20.00%	1.000	30.8	215.6	30.8	3Ø.8	24.113	23.469	
Alphas (KBtu		34.200			83.439			~
		.4316 Ifa		67.536 Flag=<**		Beta= .002	ii inter=	04413
	lsq = .997				 	(140)		•.
, r	.a433	rood KMS	sq = .9 9 7Ø	os stan	garg Err	or (MBtu) =	.351688	

Figure 2.22 d(Load)/d(Solar Aperture) as a Function of Total Solar Aperture in Albuquerque NM

Figure 2.23 Multi-linear Correlation of Δ Cooling Loads to Solar Aperture in Phoenix

Figure 2.24 Correlation of Δ Cooling Loads to Solar Aperture * Solar Usability in Phoenix

Figure 2.25 Multi-linear Correlation of Δ Heating Loads to Solar Aperture in Albuquerque

Figure 2.26 Correlation of Δ Heating Loads to Solar Aperture * Solar Usability in Albuquerque

relative "solar usability" term is dimensionless. An intercept from the regression is also shown, but was not used in the data base. The coefficients can be used with Equation 11 to calculate the solar gain component load for different window configurations.

RESULTS

Tables for Insulation and Infiltration Measures

Section 3.A contain tables of insulation and infiltration measures for the three prototype buildings in 45 base locations. For each conservation measure, the tables show the total Δ load for the prototype house in MBtu, and the component load in kBtu normalized by ft^2 for ceiling, wall, window, and floor insulation measures, by perimeter ft. for foundation perimeter insulation measures, and by ft^2 of floor area for infiltration measures. For the foundation measures, the Δ loads are relative to the foundation type with the highest load, generally the crawl space, while the component loads are relative to the regression intercept for the most prevalent foundation type in each location as listed in Table 1.7.

Following the Δ and component loads, the tables give the two regression coefficients. The linear coefficients are listed as "Slope", and the quadratic coefficients as "Curve". As described in Section 2.A, the component loads are assumed to be zero at zero U-value for insulation measures and zero leakage area for infiltration measures. Therefore, the intercepts are always zero except for the foundation measures. For foundations, the intercepts indicate Δ loads between foundation types unrelated to building conductance. These are given relative to the prevalent foundation type and in units of kBtu/ft for slabs and heated basements, and kBtu/ft² for unheated basements and crawl-spaces.

At the bottom are listed the *Base, Typical, and Residual Loads*. The *Base Load* is the total building load for a worst case building with no insulation, 0.007 effective-leakage-fraction, and the foundation type with the highest load, generally crawl space. It is the reference condition from which the Δ loads are calculated. To estimate the total loads for a prototype house in other configurations, subtract the Δ loads for the appropriate conservation levels from the base load. In addition to the Δ loads in this section, the Δ loads for various mass walls and window solar effects in Section 3.B must also be included. For the *Base Load*, the windows are assumed to be single-pane of average orientation with a shading coefficient of 1.00.

The *Typical Load* is the total building load for an house of average thermal integrity in each location. This figure is not used in the data base and included only for reference.

The Residual Load is explained in Section 2.A, and corresponds to the difference from the DOE-2 data and the sum of the component loads calculated through the

regression analyses. To estimate the total loads for a particular house configuration using the component loads approach, multiply the component loads by the normalization (i.g., square feet of ceiling, perimeter feet of slab edge, etc.), and then sum the results, including the residual load. Alternatively, the regression coefficients can be used as explained in Section 2.A.

		omponent (KBtu)	(/sf) 4.18 2.14 1.85 1.43	916.7 26.03	(/ft)	9.71 8.02 7.90 7.42 7.12 5.693 158.13	(/sf)	2,75 2,98 2,92 2,88 2,88 2,786 2,749 201.58	3.3 1.00 1.00	66.23 2.236	
	סי	Delta Co (MBtu)	-2.61 -3.69	-3.68 -3.89 (00)	asement	-2.63 -2.91 -2.93 -3.01 -3.06 (DD) (DD)		.88 .35 .25 .28 .19 .18 (DD)		(S00) (008)	MBtu MBtu MBtu
	oling Loa		Wa R-6 R-7 R-11 R-13	0 0 E	Heated Ba	R-6 R-5 4ft R-5 8ft R-16 4ft R-10 8ft Inter Slope Curve	Crawl	-0 -11 flr -13 flr -38 flr -49 flr Inter Slope Curve	indow U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve	31.91 MB 12.23 MB -1.02 MB
	S	omponent (KBtu)	(/sf) 10.22 4.09 3.11 2.23 1.89	1.1 1.1 .9 .7 689.6	(/ft)	52 32 62 68 68	(/st) (1.05 R 2.03 R 2.23 R 2.37 R 2.731 R R R 80.16	sf fir) W .49 .33 .19	.162	Load = Load =
ow ∐ wo		Delta Com (MBtu)	. 000 - 9.44 - 10.95 - 12.30	-13.95 -14.33 -14.58 (DD) 2 (DDS) -		-4.68 -4.53 -4.51 -4.51 -4.42 (00) (00)	Basement	-2.63 -1.14 81 59 59 (0D) -4 (0DS) 2	tion (/)00)24)46	Ø1ELF Ø1ELF	Base Typical Residual
Serie			Ce : 1 R-0 R-7 R-11 R-12 R-22	8 4 4 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9	Slab	0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Unheated	R-11 flr R-19 flr R-30 flr Interc Slopel	Infiltrat ELF Ach .0007(.53) .0005(.38) .0003(.23)	Slope/.00 Curve/.00	
pe Siding		ponent (KBtu)	(/sf) 19.81 9.44 7.96 6.18 5.29	າດ ຕໍ	(/ft)	882 882 883 883 883 883 883 883 883 883	(/sf)	14.76 3.75 1.90 .85 .61 08 1.775 39.94 2.660	(/sf) 36.15 22.75 6.98	43.49 1.105	
Prototy	ъ	Delta Com (MBtu)	.000 -11.65 -13.31 -15.32 -16.31 -17.95	18.95 18.95 0) 3	asement	-8.95 -14.13 -15.20 -15.42 -17.02 -17.02 e(DD) 28		.000 -16.95 -19.79 -21.78 -22.85 -22.85 (0D) 33 (0DS) -2	. 000 -9.11 -11.59	(00) 29. (008) 13	Btu Btu
One Story	ating Loa		Wall R-0 R-11 R-113 R-19	Slop Curv	Heated B	-5 8ft -10 8ft -10 8ft -10 8ft -10 8ft	_ ¥er⊃	R-0 R-11 f-r R-19 f-r R-38 f-r R-49 f-r Inter Slope Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope	100.60 M 36.08 M 2.71 M
WYEC	Å.	omponent (KBtu)	(/sf) 22.58 8.94 6.76 4.81 3.07	2.4 1.9 1.6 1.6 1468.2	(/ft)	39.7 20.2 16.6 16.3 11.5 11.5 155.7	(/st)	8.94 3:40 1.90 1.90 -1.623 76.762	(/sf flr) 8.89 5.99 3.38	10.194 3.572	e Load = Load = Load =
WN enb		Deita Co (MBtu)	ing -21 -27 -28 -38	-30.97 -31.77 -32.28 (DD)		-16.12 -19.37 -19.96 -20.81 -20.81 -20.81 -20.81 -20.81 -20.81 -20.81 -20.81 -20.81	a semen	-8.95 -17.49 -19.79 -21.27 :ept (DD) 3	ion -4.46 -8.48	.001ELF .001ELF	Base Typica Residua
Albuquerqu			Ce:- R-6 R-11 R-119 R-22 R-38	8 4 4 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		R-6 R-5 2ft R-10 4ft R-10 4ft Intel Slope Curve	0 0 0 0 0	R-10 flr R-19 flr R-30 flr Interc Slope	Infiltrat ELF Ach .0007(.71) .0005(.50) .0003(.30)	Slope/.Ø Curve/.Ø	

		onent (Btu)	, (/sf)	4.73	4.0 4.0	1.59	1.35	1.01	9 8	0.93	9	/ft)	4	ຫຼເ	"	7.97 .199 4.78	6	/st)	3.76 3.08 3.08 3.08	9.00	100	4	4 10 00 0	டம் க	
		Delta Componer (MBtu) (KBtı	•	<i>a</i> -		4	φ.	-1.77	0	(DD) 1020	'	ement (89.	400	.95	. 94 18 18 4-4		>	11999	. 19) 135 (S) -35.) -97 5) 4.	
	ooling Load	9 C	Wall	7 0 9 - 6	7	77	7	R-27	?	•	0 v r v	eated Bas	80 1	4 00	10 4f	10 8ft Inte Slop	6 1	0	1111 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 fir Inter	Slope (DD) Curve (DD)	T Mopu	1-Pane 2-Pane 3-Pane R-10	Slope (DD) Curve (DD)	20.12 MBtu 11.89 MBtu 4.25 MBtu
	Cool	Component (KBtu)	s,		! -:	~	œ.	1.43	.91	- 4	8	(/ft) H	02.0	2.28 R	. 53 R	-1.78 R .000 51.14	/.201 (/sf) (2.28 2.28 4.46 8.46 8.46 8.46 8.46 8.46 8.46 8.4	R 007.	02.69 4.593	sf fir) W:	. 19 . 07 . 01	167 .625	Load ====================================
ss Two		Delta Com (MBtu)	ing.	20 00	-4.5	-5.0	5.1	ין הייני	-5 -5 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	(<u>0</u> 0)	1		-1.81	- ^-	~	-1.73 rcept e(DD) -7	(bos) Basement		1 1 1 1 1 2 2 8 9 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9		lope(DD) -40; urve(DDS) 24	tion (/			Base Typical Residual
g Series			Ceit	R-7	· -	7	កុ	. W	R - R - A - A - A - A - A - A - A - A -	9	, L I	Slab	57 GS 74	မှ	-10 2f	IN 4ft Inte	ted		R-0 R-11 flr R-19 flr R-30 flr	Inter	0100 Curve	Infiltra	200	Slope/.001 Curve/.001	
Sidin		ponent (KBtu)	(/sf)	9.0	4.	œί	s o	. ci		715.90	•	(/ft)	5.7	6	8,	31.50 15.486 573.11 7.027	/sf		13.42 3.67 2.17 1.37 1.18	9.63 9.63	62.8 Ø.22	(/sf)	67.06 22.83 14.02 3.66	59.66 Ø.931	
Prototype	P	Delta Comp. (MBtu) (H	20	ø	-5.7		2.0.7	-7:		(DD) 2	• (222)	asement	' '	4.9-	-6.5	(00) 1	•	į	-5.85 -6.75 -7.23	-7.66 cept	(00s) 5	value	.00 -6.37 -7.64 -9.13	(00) 14 (00S) 4	MBtu MBtu MBtu
Mid Town	ating Loa		Wall R-6	R-7	R-11	7 -	, c	ı m		Slop		Heated B	R-0 R-5 4ft	5	4 6	Inte Slop Curv		e o	R-11 R-13 R-38 F-1 S-38 F-1 S-38 F-1 S-38 F-1 S-38 F-1 S-38 F-1 S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-1 S	-49 †lr Inte	0 - 2 0 - 2 0 - 2 0 - 2 0 - 3	Window U-	1-Pane 2-Pane 3-Pane R-10	Slope	45.68 M 17.51 M 6.49 MI
WYEC	H	omponent (KBtu)	(/sf 23.8	8.8	4.6	4. W	2.7	2.1		3889.57		(/ft)	Ø IV	0,1	-, ~	.000 .000 1680.64 140.817	t (/sf)	L	20.5 20.4 1.49 90 90	170	87.22	/sf flr)	6.38 3.76 1.77	3.500 8.021	E Load =
rque NM		Delta Co (MBtu)	ling .00	o. 8-	-16.3	-12.0	-12.6	-12.9	9 -13.25 Ø -13.41	(DD) (DDS)	,	•		-7.6	7.7-	cept (DD) (DDS)	Ваѕемел	,	-6.61 -7.16 -7.51	apt OC	e(DDS) -1	ation (9) .80 0) -3.15 9) -5.53	.001ELF .001ELF	Base Typica Residua
Albuquerque			Ceil R-0	7-	7	٠,	i m	ω.	4 0	Slog		Slab	4-	က် မ	-10 21	Slon	Unheated		R-11 flr R-19 flr R-30 flr	Interc	N N N N N N N N N N N N N N N N N N N	+ +	ഗയയാ	Slope/.8 Curve/.8	

		omponent (KBtu)	(/sf) 4.69 1.99 1.70 1.28 1.68	. 64 	12.90 11.23 11.40 10.73 10.57 9.502 116.84	€ 8.0	2.28 2.28 2.25 2.25 2.174 129.43	2.06 .60 .36	29.39 1.840
	ig Load	Delta Co (MBtu)	Wall R-0 R-7 .67 R-11 -78 R-13 -89 R-17 -1.045	-34 -1.8 lope(DD) urve(DDS)	4ft 8ft 8ft Slope(DD) Curve(DDS)		# fir .23 # fir .21 # fir .21 # fir .21 Intercept .28 Slope(DD) .	dow U-value 1-Pane .00 2-Pane21 3-Pane24 R-1028	Slope(DD) Curve(DDS) .96 MBtu .49 MBtu
	oo Ling			4 1	9000	R-8-10		<u>.</u>	17
	U	mponent (KBtu)	(/sf) 11.23 4.43 3.34 2.37 2.60	189		//sf 6	1.54 1.65 1.942 387.86 26.304	/sf flr) .23 .10	104 .625 - Load = Load = Load = =
Two		elta Co (MBtu)	-4.08 -4.08 -4.73 -5.32 -5.54	86.8 8.1.8 S)	-1.26 -1.24 -1.22 -1.23 -1.23 -1.28 (DD) -	ē 7.	14	.ion (/ .000 15 25	Ø1ELF Ø1ELF Base Typical Residual
Series		۵	Ceil: R-Ø R-7 R-11 R-19 R-22 R-30	-38 -68 -68 -68 -68	-6 2ft -5 2ft -5 4ft -10 2ft -10 4ft Inter Slope Curve	heated Ø 11 flr	-19 fir -30 fir Intercept Slope(DD) Curve(DDS)	Infiltrat ELF Ach 0007(.53) 0005(.38) 0003(.23)	Slope/.00
iding		+ _ ·	1. Ø O B 3 S \sim	ω σ ₁ ~	∞ ∞ ∞ ∞ ∞		000040r RR	• • •	
type S		omponent (KBtu)	(/sf 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	2.1 2568.1 169.86 (/ft	. 14.44	14.3 3.8	2.15 7 1.26 7 1.08 348 2775.38	(/sf) 65.91 20.60 12.51 2.99	50.894
t Prototyp	70	Delta C (MBtu)	0.4047.0	-5.2 (DD) (DDS) sement	-5.8 -7.3 -7.5 -7.5 -7.8 -7.8 (00) (00S)	 	-7.3 -7.9 -7.9 -8.3 :eept (DD) (DDS)	. 00 . 6.52 -7.69	(00) (00S) Btu Btu
sartment	ng Loa	_	X X X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2	R-34 Slop Curv	SS 8ft 10 8ft 10 8ft 10 SC Cury	*	-19 flr -30 flr -38 flr -49 flr Inter Slope Curve	ndow U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 43.65 M 16.25 M 6.57 M
MApar	Heati			9 	ααααα	0 & &	~ ~ ~ ~	.* .*	11 11 11
WYEC		omponent (KBtu)	(/sf) 24.32 24.32 8.87 6.41 4.19 3.51	2.0 1.6 1.4 1.4 68.44 (/ft		2 4 1	88 .0 60 .00	6.42 3.77 1.77	3.416 8.230 8.230 1 Load
N O		elta Co (MBtu)		13.37 13.68 13.75 13.75 0) 0S)	-7.59 -8.19 -8.28 -8.29 -8.29 -8.40 (DD) (DD)	Basement -5.89 -7.46	7.96 8.28 8.28 7 5) -	ion -3.66 -5.59	1ELF 1ELF Bas Typica Residua
lbuquerq		۵	C. B. C.		<pre></pre>	heated 0 11 fir	19 fir 30 fir Inter Slope Curve	Infiltrat ELF Ach 0007(.69) 0005(.50) 0003(.29)	lope/.0011 urve/.0011
∢					σ , σ, σ, σ, σ,	2 44		н т <i>о о о</i>	νO

							•	
	omponent (KBtu)	(/sf) 3.62 7 1.87 5 1.62 3 1.28 2 1.11 6 .81	819.03 -27.136 (/ft)	6 ↔	(/sf) 1.92	2.70 2.83 3.00 3.04 3.15 3.15 3.310 426.02	(/sf) -2.60 -2.28 -1.51 60	269.92 6.492
Po	Delta C (MBtu)	2. 2	e (DD) e (DDS) asement	-2.42 -2.76 -2.77 -2.85 -2.88 rcept e(DD) e(DDS)	9	1.20 1.40 1.40 1.66 1.72 1.89 rcept e(DD)		oe(DD) - oe(DDS) - MBtu MBtu MBtu
Cooling Loa		× × × × × × × × × × × × × × × × × × ×	Slope Curve Heated Ba	R-6 R-5 8-5 8ft R-10 8ft R-10 8ft Inte Slop	e 0	R-11 flr R-19 flr R-38 flr R-49 flr Sloper Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 31.51 Mi 14.Ø1 Mi
ŭ	Component (KBtu)	(/sf) (/sf) (8.24 8.24 8.24 1.78 1.15 1.15 1.15 6 1.15 6 73	1664.39 -46.398 (/ft)	-15.17 -13.78 -13.78 -13.42 -11.119 -712.21 31.110	t (/sf	3.240 1045.97 3.40	(/sf flr) 1.92 1.45	3.312 812 0ad = Load =
	Delta C (MBtu)	0. 7. 6 1. 7 1.	pe(DD) ve(DDS) b	t -5.48 t -5.25 t -5.35 t -5.19 ercept pe(DD)	Baseme	25 .42 .85 .85 .00) -	ation h 9) .000 5)72 1) -1.54	.001ELF .001ELF Bas Typica Residua
		7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	O S C L L L L L L L L L L L L L L L L L L	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Slope Curve	nheate -0	R-19 fir R-30 fir Interca Slope(Curve(C	Infiltre ELF Acl .0007(.4) .0005(.3)	Slope/.i
	omponent (KBtu)	//sf) 17.13 8.20 8.20 6.92 6.92 7.40 7.35 7.35 7.56	3300.40 -21.403 (/ft)	60.36 39.15 31.56 33.79 23.01 .000 .2227.25	(/sf) 11.17	16 68 1	(/sf) 76.60 33.20 20.94 6.52	760.08 5.353
ъ	Delta Co (MBtu)	.00 -10.04 -11.47 -13.19 -14.08 -15.48	e(DD) e(DDS) asement	-7.18 -10.76 -11.96 -11.59 -13.38 -13.38 rcept e(DD)	0.4	-16.72 -18.82 -18.32 -19.18 (DD) 2 (DDS) 2	.00 -8.02 -10.29	e(DD) 2 e(DDS) 2 MBtu MBtu MBtu
eating Loa		Waa R R R R R R R R R R R R R R R R R R	Slop Curve Heated B	R-6 R-5 R-5 8ft R-10 8ft Inter Sclope	raw! -0 -11 fr	R-19 flr R-30 flr R-49 flr Inter Slope	Window U 1-Pane 2-Pane 3-Pane R-10	Slope Curve 85.11 MI 22.04 MI .03 MI
H	omponent (KBtu)	(/sf) 19.18 7.58 5.73 5.73 4.06 3.44 2.60 2.10 1.66	1778.18 91.553 (/ft)	39.94 21.50 15.84 18.55 -2.355 636.71	(/s	46. 78	/sf flr) 8.30 5.70 3.28	10.260 2.273 P Load = Load =
	Delta Con (MBtu)	.00 -17.87 -20.72 -23.28 -24.28 -25.53 -25.53 -26.31 -26.31	(SQQ) 3	-10.57 -13.63 -14.57 -14.12 -15.33 -15.33 (00) 3	sеme -7.1 14.5	46	ē 4,	IELF Base Typica
		C 6	Slope Curve Slab	2ft 4ft 0 2ft 0 4ft Inter Slope Curve	nheated -0 -11 flr	19 flr 30 flr Inter Slope Curve	nfilt LF A 607(. 605(. 603(.	Slope/.00

One Story Prototype Siding

WYEC

Atlanta GA

		omponent (KBtu)	(/sf) 1.93 .34 .11	. i i	-142.35 93.265 (/ft)	-2.14 -3.64 -3.14 -3.64 -2.64 -299.065	(/sf)	1.11 2.24 2.47 2.68 2.72 2.86 3.122 604.31	(/sf) -14.31 -11.81 -7.79	375.63 31.574	
		elta Co (MBtu)			(DD) (DDS) sement	75 81 79 81 81 (00) (00)		.68 .82 .94 .97 .97 .97 (DD)		(00) -1 (00S)	כככ
	g Load	90	Wa	R-19 R-27 R-34	Slope (Curve (Curve (E	4ft 8ft Ø 4ft Ø 8ft Interce Slope(D	- 3	1 fir 9 fir Ø fir 9 fir Slope(D Curve(D	dow U-va	0 0 0 0	1.78 MBtu 1.70 MBtu 1.79 MBtu
	Cooling				H e e	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Windo		20 14 8
	ŭ	mponent (KBtu)	(/sf) 7.50 2.62 1.84 1.13	0.0.4.4.4 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	939.79 54.904 (/ft)	- 32 - 32 - 34 - 34 - 31 - 31 - 31 - 31 - 31 - 31 - 31 - 31	(/sf)	3.191 008.19	(/sf f r) 1.40 1.00 .60	2.688	Load III
Q		್ಗಿ	9.00 4.00 9.00 4.00	6 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(S)	1.98 1.93 1.91 1.91 1.85 t t .	ешепt	75 36 63 80 -1) 86 96	4 4	Bas (Pica
es Two		Delta (MBti	. 10 0 . 10	9 00 00 00 V	pe(DD) ve(DDS) b	ve ctt	d Bas	fir	tratio Ach .49) .35)	.001E	Res
Seri			R-7-8	96646	S S S	S 2ft 10 2ft 10 2ft Slope Curve	Unheated	111 fl 119 fl 30 fl Into Slop	Infilt ELF Ac 0007(0005(ope/ rve/	
ē						**************************************	5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	H B 8 8 8	S _u	
pe Siding		ponent (KBtu)	(/sf) 15.75 6.97 5.72 4.37	r.00	522.10 75.596 (/ft)	57.83 31.33 24.08 26.08 17.08 525.81	(/sf)	16.37 1.97 .69 02 18 18 -1.751 156.78	(/sf) 61.28 22.39 13.87 3.85	568.58 28.505	
rototype		د د د	. 66 4 . 18 5 . 78	<i>-</i> . 62 €	t 19	.91 .26 .18 .54		6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		15	
q	Ð	Delta (MBti	111	1 1 1	e (DD) e (DDS) asemen	- 5 - 5 - 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6		-5 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6		. .	MBtu MBtu MBtu
Town	g Loa		Wa -	R-19 R-27 R-34	Slop Curv	Aft 8 4ft 0 8ft Intervo	<u>-</u>	OS OF TILL	ndow U 1-Pan 2-Pan 3-Pan R-10	$\frac{8}{2}$	8.46 8.75 2.61
₽ ※	aatin				H ea	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Cra	R - 111 R - 111 R - 130 R - 300 P - 300 P - 300	<u>×</u>		m
WYEC	Ť.	(KBtu)	(/sf) 19.31 7.24 5.31 3.58	@ 0. 8 4 0.	1226.31 5.259 (/ft)	29.83 13.08 18.83 10.83 5.58 -2.679 54.873	(/sf)	3.86 1.17 .36 16 -1.584 943.81	(/sf flr) 6.75 4.34 2.32	6.292	E Load III
		a Comp	62.44	9.78 0.24 0.51 0.73	S) 3	5.03 5.70 5.70 5.87 5.79 6.00 t	ement	91 82 32 -1	on . .088 -2.89 -5.32	ELF	Basy ypica sidua
₹		Delta (MBtu	1 ing	a no no avo	pe (00) ve (00S) b	15. t 15. t 15. t 16. t 16	d Bas	Fir -5. Fir -6. Fir -6. Tire -6. Tire -6. Tire (DD)	# 4 6 6 6 4 -	.001E	Ren
tlanta			R-11-17	76640	S S S	0 24 0 24 0 24 0 24 0 2 2	heate	COH WALL	Infiltr ELF Acl 00007(.71 00005(.51	lope/ urve/	
ı,					a	88888 111111 111010	5	88-11-0 -11-0	H 9 9 9	S	

	Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-Ø .00 2.32 R-748 .82 R-1155 .60 R-1361 .41 R-1964 .32	-3468 .1 lope(DD) 175.4 urva(DDS) 47.68 d Basement (/ft	4ft66 3. 8ft61 1. 8 4ft63 1. 9 8ft63 1. Intercept .0 Slope(DD) 76. Curve(DDS) .0	Craw! (/sf)	R-0 R-11 flr .81 2.45 R-19 flr 1.00 2.76 R-30 flr 1.17 3.04 R-38 flr 1.21 3.11 R-49 flr 1.32 3.30 Intercept 3.665 Slope(DD) -852.21 Curve(DDS) 68.422	Window U-value (/sf) 1-Pane .00 -15.64 2-Pane .33 -13.35 3-Pane .98 -8.82 R-10 1.75 -3.49	Slope(DD) -1571.39 Curve(DDS) 37.077 18.91 MBtu 13.73 MBtu 8.19 MBtu
ing Series Two	ŭ	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 -2.80 1.84 R-11 -3.25 1.09 R-19 -3.65 .42 R-22 -3.70 .34	-38 -3.88 .1 -60 -3.85 .1 ope(DD) 220.6 urve(DDS) 147.91 ab	$\cdots \cdots \omega \cdot \omega$	Unheated Basement (/sf)	R-11 flr .45 1.84 R-19 flr .78 2.40 R-30 flr 1.00 2.76 Intercept 3.752 Slope(DD) -1362.68 Curve(DDS) 129.129	Infiltration (/sf flr) ELF Ach .0007(.49) .00 1.16 .0005(.35)47 .77 .0003(.21)88 .43	Slope/.001ELF 1.250 Curve/.001ELF .573 Base Load ≡ Typical Load ≡ Residual Load =
MApartment Prototype Sidi	leating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .000 15.44 R-7 -2.81 6.59 R-11 -3.21 5.33 R-13 -3.62 4.03 R-19 -3.83 3.38 R-27 -4.13 2.43	lope(DD) 2249.3 urve(DDS) 115.68 d Basement (/ft	R-0 R-5 4ft -5.77 66.02 R-5 8ft -6.00 24.85 R-10 4ft -5.95 26.52 R-10 8ft -6.24 17.02 Intercept .000 Slope(DD) 1447.29 Curve(DDS) 3.330	Crawl (/sf)	R-0 R-11 flr -5.34 2.34 R-19 flr -6.11 1.06 R-30 flr -6.54 .34 R-38 flr -6.54 .34 R-49 flr -6.9230 Intercept -1.371 Slope(DD) 2107.09 Curve(DDS) 68.784) Window U-value (/sf) 1-Pane .00 59.12 2-Pane -5.59 20.30 3-Pane -6.72 12.48 R-10 -8.04 3.28	Slope(DD) 1313.67 Curve(DDS) 35.061 = 35.89 MBtu = 7.62 MBtu = 3.18 MBtu
Atlanta GA WYEC	Ĭ	Deita Component (MBtu) (KBtu)	Ceiting (/sf) R-0 R-1 -7.07 6.86 R-11 -8.20 4.98 R-19 -9.22 3.29 R-22 -9.53 2.76	-39 -10.41 1.3 -60 -10.53 1.1 lope(DD) 2927.8 urve(DDS) 36.74 lab (/ft	R-Ø R-5 2ft -6.18 19.02 R-5 4ft -6.31 14.52 R-10 2ft -6.25 16.52 R-10 4ft -6.42 11.02 Intercept 2.721 Slope(DD) 1891.96 Curve(DDS) 76.556	Unheated Basement (/sf)	R-0 R-11 flr -6.10 1.08 R-19 flr -6.48 .44 R-30 flr -6.73 .03 Intercept -1.085 Slope(DD) 1512.54 Curve(DDS) -128.177	Infiltration (/sf flr) ELF Ach .0007(.75) .00 6.47 .0005(.55) -2.88 4.07 .0003(.34) -5.23 2.11	Slope/.001ELF 5.375 Curve/.001ELF 5.521 Base Load = Typical Load = Residual Load =

		mponent (KBtu)	(/sf) 4.53 2.28 1.96 1.50 1.50 7.5	955.69 -21.088 (/ft)	20.000000	(/st) 4.48 4.92 4.87 4.86 4.86 4.86 4.760 160.19	1.4 1.6 1.0 1.1	-51.61 4.064
	Cooling Load	Delta Co (MBtu)	Wall R-0 R-7 -2.53 R-11 -2.53 R-13 -3.48 R-19 -4.65 R-34 -4.65	Slope(DD) Curve(DDS) Heated Basement	91111	Craw! R-0 R-11 flr .67 R-13 flr .68 R-38 flr .58 R-49 flr .58 Intercept .57 Curve(DDS) .		Slope(DD) Curve(DDS) 39.43 MBtu 18.33 MBtu 1.40 MBtu
ing Series T≋o	ပိ	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø 8.13 R-7 -7.53 3.24 R-11 -8.73 2.46 R-19 -9.81 1.76 R-22 -10.22 1.49 R-30 -10.11 .92 R-38 -11.11 .92 R-49 -11.41 .72	Slope(DD) 1645.37 Curve(DDS) -46.202 Slab (/ft)	2ft -7.26 -2. 4ft -7.31 -2. 4ft -7.22 -1. 0 2ft -7.30 -2. 0 4ft -7.20 -1. Independent of the control of th	Unheated Basement (/sf) R-0 R-13 8 2.29 R-19 flr -1.19 3.71 R-30 flr40 4.22 Intercept 4.737 Slope(DD) -684.41 Curve(DDS) 40.351	(/sf 60 2. 69 1. 18 1.	Slope/.001ELF 3.539 Curve/.001ELF .0000 = Base Load = Typical Load = Residual Load =
One Story Prototype Sid	Heating Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 R-11 -9.28 5.89 R-13 -10.73 4.60 R-19 -11.67 3.96 R-37 -12.67 2.87 R-34 -13.42 2.21	Slope(DD) 2856.59 Curve(DDS) -41.958 Heated Basement (/ft)	-6 -6.27 56. -5 4ft -9.52 37. -5 8ft -10.69 30. -10 4ft -10.34 32. -10 8ft -11.98 22. Intercept 22. Intercept 22. Slope(DD) 2039. Curve(DDS) -16.9	Craw! (/sf) R-0 R-11 fir -13.00 10.21 R-19 fir -15.04 R-30 fir -16.1829 R-38 fir -16.4446 R-49 fir -17.1995 Intercept -2.117 Slope(DD) 2285.33	Window U-value (/sf 1-Pane .00 60.2 2-Pane -6.14 27.0 3-Pane -7.97 17.1 R-10 -10.13 5.4	Slope(DD) 2389.91 Curve(DDS) -1.060 = 72.55 MBtu = 28.10 MBtu :53 MBtu
Birmingham AL WYEC	Í	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 -14.83 6.37 R-11 -17.19 4.83 R-19 -19.32 3.45 R-22 -20.14 2.92 R-36 -22.189 1.78 R-49 -22.47 1.41 R-60 -22.84	Slope(DD) 3220.21 Curve(DDS) -88.017 Slab (/ft)	2ft -12.08 21.9 4ft -12.94 16.8 0 2ft -12.94 16.8 0 4ft -13.65 12.5 Intercept .00 Slope(DD) 3307.6 Curve(DDS) -15.39	Unheated Basement (/sf) R-0 R-11 flr -13.11 1.70 R-19 flr -14.82 .59 R-30 flr -15.9212 Intercept -2.004 Slope(DD) 2534.88	ltration (/sf f Ach (.69) .00 7.9 (.48) -3.77 5.5 (.30) -7.32 3.1	Slope/.001ELF 10.097 Curve/.001ELF 1.786 Base Load = Typical Load = Residual Load =

	Cooling Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 .000 4.04 R-7 -1.02 1.89 R-11 -1.17 1.59 R-13 -1.33 1.25 R-19 -1.41 1.08 R-27 -1.56 .77 R-34 -1.65 .58	Slope(DD) 749.57 Curve(DDS) .293 Heated Basement (/ft)	4	Crawi (/sf)	R-0 R-11 flr .44 4.98 R-19 flr .44 4.98 R-30 flr .46 5.02 R-38 flr .47 5.03 R-49 flr .49 5.06 Slope(DD) .36.99 Curve(DDS) .36.99	Window U-value (/sf) 1-Pane .00 -6.32 2-Pane .08 -5.77 3-Pane .36 -3.82 .R-10 .69 -1.53	Slope(DD) -692.23 Curve(DDS) 17.146 26.40 MBtu 17.95 MBtu 8.39 MBtu
ing Series Two	S	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .289 2.96 R-11 .3.35 2.19 R-19 .3.76 1.50 R-22 .3.90 1.27 R-30 .4.20 .77 R-49 .4.30 .60 R-60 .4.36 .50	Slope(DD) 1366.30 Curve(DDS) -9.528 Slab (/ft)	R-Ø -2.79 -5.99 R-5 2ft -2.80 -6.24 R-5 4ft -2.77 -5.49 R-10 2ft -2.80 -6.24 R-10 4ft -2.73 -4.49 Intercept .000 Slope(DD) -1485.10 Curve(DDS) 80.605	Unheated Basement (/sf)	R-0 R-11 flr40 3.58 R-19 flr21 3.91 R-30 flr08 4.12 Intercept 4.661 Slope(DD) -729.77 Curve(DDS) 49.386	Infiltration (/sf flr) ELF Ach .0007(.41) .00 2.03 .0005(.29)72 1.43 .0003(.18) -1.42 .84	Slope/.001ELF 2.750 Curve/.001ELF .208 Base Load = Typical Load = Residual Load =
Mid Town Prototype Sid	eating Load	Deita Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 -4.10 4.72 R-13 -4.65 3.56 R-19 -4.33 2.98 R-27 -5.32 2.98 R-34 -5.56 1.66	Slope(DD) 2024.77 Curve(DDS) 84.304 Heated Basement (/ft)	R-0 -3.51 49.45 R-5 4ft -4.47 25.45 R-6 8ft -4.70 19.70 R-10 4ft -4.65 20.95 R-10 8ft -4.92 14.20 Intercept 2.070 Slope(DD) 1025.00 Curve(DDS) 2.868	Craw! (/sf)	R-0 R-11 flr -4.52 1.61 R-19 flr -5.16 .55 R-3 flr -5.46 .04 R-49 flr -5.7307 Intercept -1.243 Slope(DD) 1537.74 Curve(DDS) 95.247	Window U-value (/sf) 1-Pane .00 45.46 2-Pane -4.32 15.46 3-Pane -5.18 9.50 R-10 -6.19 2.48	Slope(DD) 987.83 Curve(DDS) 27.813 33.01 MBtu 12.84 MBtu 3.87 MBtu
Birmingham AL WYEC	⊕ H	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 16.99 R-7 -6.38 6.36 R-11 -7.40 4.67 R-19 -8.31 3.14 R-22 -8.61 2.64 R-30 -9.02 1.97 R-38 -9.26 1.56 R-49 -9.44 1.25 R-60 -9.56 1.06	Slope(DD) 2825.01 Curve(DDS) 6.912 Slab (/ft)	R-0 -4.46 25.70 R-5 2ft -5.06 10.70 R-5 4ft -5.20 7.20 R-10 2ft -5.14 8.70 R-10 4ft -5.29 4.95 Intercept .000 Slope(DD) 918.22 Curve(DDS) 91.674	Unheated Basement (/sf)	R-0 -3.51 3.30 R-11 flr -4.93 .93 R-19 flr -5.34 .25 R-30 flr -5.6019 Intercept -1.368 Slope(DD) 1608.53 Curve(DDS) -136.293	Infiltration (/sf flr) ELF Ach .0007(.68) .00 5.65 .0005(.49) -2.70 3.40 .0003(.28) -4.79 1.66	Slope/.001ELF 3.625 Curve/.001ELF 6.354 Base Load = Typical Load = Residual Load =

	WBtu)	/sf) 3.86 1.65 1.34 .99 .82 .60	62.96 6.687 (/ft)	33.65 29.82 29.98 29.15 29.15 28.15 72.67	(/sf)	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	/sf) 5.02 4.85 3.22 1.30	.161
ing Load	Delta Comp (MBtu) (Wali R-0 R-7 R-1168 R-1389 R-1994 R-27 - 1.01 R-34 - 1.05	Slope(DD) 5 Curve(DDS) 2 ated Basement	-0 -1.03 -5 4ft -1.15 -5 8ft -1.14 -10 4ft -1.17 -10 8ft -1.20 Slope(DD) 1 Curve(DDS)	_ **	11 flr .54 19 flr .55 30 flr .56 49 flr .57 49 flr .57 Slope(DD) 7 Curve(DDS) -48	1-Pane .000 - 2-Pane .02 - 3-Pane .26 - R-10 .54 -	Slope(DD) -59 Curve(DDS) 15 24.49 MBtu 16.98 MBtu 7.54 MBtu
Series T⊮o Coolin	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 7.78 R-7 -2.92 2.91 R-11 -3.39 2.13 R-19 -3.81 1.43 R-22 -3.94 1.20 R-38 -4.13 .90 R-38 -4.24 .71 R-49 -4.32 .57 R-60 -4.38 .48	Slope(DD) 1287.99 Curve(DDS) 3.968 Slab (/ft) He	R-6 -2.22 -6.02 R-8-5 4ft -2.24 -6.68 R-10 2ft -2.24 -6.58 R-10 2ft -2.24 -6.52 R-10 4ft -2.19 -4.85 R-10 4ft -2.19 -4.85 R-10 e(DD) -1545.17 Curve(DDS) 85.123	Unheated Basement (/sf) Cr	R-0 1.68 R-11 flr31 2.88 R-19 flr12 3.20 R-19 flr00 3.41 R-30 flr00 3.41 R-10 flrercept 3.955 Slope(DD) -742.03 Curve(DDS) 58.274	Infiltration (/sf flr) Wil ELF Ach .0007(.41) .00 2.01 .0005(.29)69 1.44 .0003(.18) -1.38 .86	Slope/.001ELF 2.875 Curve/.001ELF .000 Base Load = Typical Load = Residual Load =
MApartment Prototype Siding Heating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 R-11 R-13 R-13 R-13 R-13 R-27 R-27 R-37 R-37 R-37 R-37 R-37 R-37 R-37 R-3	Slope(DD) 1794.88 Curve(DDS) 121.914 Heated Basement (/ft)	R-0 R-5 4ft -5.16 23.96 R-5 8ft -5.38 16.96 R-10 4ft -5.34 18.12 R-10 8ft -5.57 10.46 Intercept -3.355 Slope(DD) 1128.12 Curve(DDS) 6.268	Crawl (/sf)	R-0 .00 9.81 R-11 flr -4.82 1.77 R-19 flr -5.50 .64 R-30 flr -5.83 .09 R-38 flr -5.9004 R-49 flr -6.1240 Intercept -1.296 Slope(DD) 1661.81 Curve(DDS) 98.167	Window U-value (/sf) 1-Pane .00 44.71 2-Pane -4.43 13.98 3-Pane -5.22 8.49 R-10 -6.15 2.03	Slope(DD) 782.91 Curve(DDS) 34.488 31.25 MBtu 11.74 MBtu 4.26 MBtu
Birmingham AL WYEC M	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 -6.58 6.23 R-11 -7.64 4.48 R-19 -8.58 2.90 R-22 -9.57 R-30 -9.49 1.14 R-49 -9.74 .98	Slope(DD) 2544.62 Curve(DDS) 60.234 Slab .(/ft)	R-0 R-5 2ft -5.48 13.46 R-5 4ft -5.59 9.62 R-10 2ft -5.54 11.29 R-10 4ft -5.68 6.62 Intercept .0000 Slope(DD) 1415.64 Curve(DDS) 80.199	Unheated Basement (/sf)	R-0 R-11 flr -5.43 .76 R-19 flr -5.78 .17 R-30 flr -6.0121 Intercept -1.242 Slope(DD) 1408.53 Curve(DDS) -124.548	Infiltration (/sf flr) ELF Ach .0007(.68) .00 5.32 .0005(.47) -2.68 3.09 .0003(.28) -4.67 1.43	Slope/.001ELF 2.645 Curve/.001ELF 7.084 Base Load = Typical Load = Residual Load =

		omponent (KBtu)	(/sf) 2.16 1.12 .98 .74	483.3 15.20	(/ft) 3.41 1.06 1.06 1.000 .46 .46 .900 19.50	(/sf) 2.32 2.69 2.72 2.78 2.81 2.81	9 • • •	109.61 838
		elta ((MBtu)	.00 -1.16 -1.33 -1.59	. co co	-3.80 -3.80 -3.40 -3.40 -3.50 cept (DD) (DD)	.63 .63 .72 .72	1 2 2 3 3 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MBtu MBtu MBtu MBtu MBtu
	Cooling Load	۵	Waa - 1 R - 0 R - 7 R - 11 R - 113 R - 119		Heated Ba R-6 R-5 4ft R-10 4ft R-10 8ft Inter Slope Curve	Craw R-0 R-11 f- R-30 f-r R-38 f-r R-48 f-r	Window U-value 1-Pane 2-Pane 3-Pane R-10	Slope Curve 14.48 MB 2.98 MB -2.91 MB
	ŭ	omponent (KBtu)	(/sf) 4.35 1.75 1.33 .96	897.7-27.58	(/ft) -3.40 -2.43 -1.89 -2.25 -1.41 -669.17	. (/sf) .37 1.48 1.84 2.07 2.698	/sf f / 2.42 / 2.42 / 3	. 325 . 406 . 6 Load = Load = Load =
		Delta Co (MBtu)	4400	$\omega \omega \omega =$	-4.13 -3.97 -3.88 -3.94 -3.86 (DD) (DDS)	Basement -3.00 -1.28 73 38 cept	6 7 7 7 8	.001ELF .001ELF Base Typical Residual
	•			1 1 1 1 - 2 . 2 8 8 8 8 9 6 7 .	Slab R-6 2ft R-5 2ft R-10 2ft R-10 4ft Inter- Slope Curve	Unheated Basen R-0 -3. R-11 flr -1. R-19 flr R-30 flr Intercept	Infiltra ELF Ach .0007(.68) .0005(.49)	Slope/.0
		a Component tu) (KBtu)	(/sf) 46.98 23.26 19.88 15.70	9.8 7.4 7.4 9802.2 198.54	(/f 151. 101. 84. 88. 61. 61.	(/sf) 27.27 .04 -4.68 -7.73 -10.43 -14.994	28.78 (/sf (/sf (/sf 226.2 109.6 69.8 23.0	931.18
	70	Delta Co (MBtu)	.00 -26.65 -30.45 -35.15	-41.76 -44.39 (DD) -	sement -16.90 -25.13 -28.05 -27.27 -31.82 (00) (00S)	-41.93 -49.20 -53.90 -54.97 -58.06 (DD)	DDS) - alue .000 -21.54 -28.89	e(DD) 9 e(DDS) - MBtu MBtu
	Heating Load	_	Wa	R-27 R-34 Slop Curv	8 000044	Craw! R-6 R-11 flr R-19 flr R-30 flr R-40 flr R-40 flr R-40 flr	w	Slope Curve 260.49 MB 94.28 MB 14.27 MB
	H.	omponent (KBtu)	7.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	7. 5. 3. 30196.	(/f 69. 23. 10. 15. 15. -45.8 3282. 257.1	16.36 1.15 -3.18 -5.96 -13.486 6241.98	64.68 /sf f 31.8 22.6 13.5	44.805 . 893 . Load = 1. Load = 1.
		elta C (MBt∪)	. 000 - 45.95 - 53.29 - 59.88 - 62.44	-65.8 -67.9 -69.8 -71.0 (DD) (DDS)	-30.45 -38.03 -48.32 -39.47 -42.71 cept (DD) 1	-16.98 -16.98 -46.89 -51.18 -61.18	on .ØØ .14.13 28.15	Bas Typica Residua
		۵	Ce:		Slab 2ft 2ft 8 2ft 9 4ft Slope Curve	Unheated PR-0 . R-11 flr R-19 flr R-30 flr Slope	urve tra Ach .89 .38	Slope/.001 Curve/.001

One Story Prototype Siding Series Two

WYEC

Bismarck ND

		component (KBtu)	(/sf) 2.35 1.138 1.15 .98 .77 .58	599.93 30.424 (/ft)	1.82 .07 .32 43 18 866 2.186	(/sf)	1.90 2.46 2.52 2.52 2.54 2.54 2.54 2.58 2.68 3.67 464	.58 85 05 05	-25.05 1.775
	70	Delta Com (MBtu)	00. 00. 00. 00. 00. 00. 00.	e(DD) e(DDS) - asement	-1.07 -1.14 -1.13 -1.16 -1.15 rcept e(DD)		.88 .38 .37 .37 .38 .38 .6(DD)	-value 6 69 6 69 1 . 69	e (DD) e (DDS) MBtu MBtu MBtu
	ooling Load		X X X X X X X X X X X X X X X X X X X	Slop Curv Heated B	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Inte Slop Curv	Crawi	R-0 R-11 R-130 F-30 f-1 A-30 f-1 Cury	Window U. 1-Pan 2-Pan 3-Pan R-10	S-0 Curv 9.87 5.42 1.68
	Š	omponent (KBtu)	(/sf) 4.37 1.33 1.33 1.33 .95 .81 .62 .39	890.41 .25.945 (/ft)	-11.18 -9.18 -8.18 -8.68 -7.18 -3.572 56.216	: (/sf)	1.12 1.17 1.50 1.70 2.276 -781.34 70.437	(/sf flr) .51 .39	208 208 208 208 208
Two		Delta Com (MBtu)	ing 1.1.60 1.1.82 1.2.182 1.2.214 1.2.32 1.3.32 1.3.32 1.3.32	e(DD) e(DDS) -	-1.59 -1.47 -1.49 -1.49 -1.43 -1.43 -(DD) -1	Basement	-1.07 25 25 12 005)	ation 3) .000 9)15	.001ELF .001ELF Base Typica Residua
Series			C	S Curve	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inte Slop Curv	Unheated	R-0 R-11 flr R-19 flr R-3Ø flr Interce Slope([Curve([Infiltra ELF Act .0007(.68 .0005(.48)	Slope/.
Siding		ent 3tu)	/sf) 6.66 2.56 4.96 7.98 7.98	4.23 .550 /ft)	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	/sf)	9.73 3.83 3.83 6.67 6.63 8.66 8.66	/sf) 3.11 7.97 2.13 9.99	8.58 .666
type		ompon (KB	Ø80876 ~401111	919, -98, t (,	1 18 6 11 9 6 9 6 715 -59	>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	600 21 58 9 74 6 81 1	853 -17
Prototy		elta C (MBtu)	0.11. 6.11. 7.15. 7.7. 8.81.	(DD) (DDS) Semen	-10.3 -13.10 -14.00 -13.8 -15.00 (DD)		-15. -18. -19. -20. -21. (00) (00)	value -16: -21:	e (DD) e (DDS) MBtu MBtu MBtu
Town	g Load	Õ	W X X X X X X X X X X X X X X X X X X X	Slope Curve	Aft Bft B Aft Inter Slope Curve	-	OB TILL OB TILL OB TILL SCOPE CUTVE	ndow U- 1-Pane 2-Pane 3-Pane R-10	Slop Curv 8.76 4.23 3.51
₽ ∑	eating			T e a	***** 	Cra	**************************************	r) Win	1111
WYEC	Ĭ	omponent (KBtu)	(/sf) 52.417 20.117 10.82 10.82 9.15 6.92 6.57 7.40 9.64	.0013.88 .204.826 (/ft)	7 74.13 7 26.63 2 12.88 2 17.88 787 -39.816 12186.66	nt (/sf)	1 12.54 3154 327 0 -2.27 -8.185 8141.35 -799.405	(/sf flr Ø 3Ø.06 8 21.07 8 12.41	40.167 3.958 ase Load cal Load ual Load
9		elta Co (MBtu)	9 .00 -19.04 -22.08 -22.81 -25.81 -27.15 -27.96 -28.67	(00) 1 (00S) -	-14.87 -16.77 -17.32 -17.12 -17.16 (DD) 1	Ваѕетег	-16.3 -15.9 -17.9 -19.2 -19.2 (DD)	ion .8 -16.7 -21.1	ELF ELF Typ:
ismarck N		۵	Ceilin R-6 R-7 R-11 R-19 R-22 R-38 R-49	Slope Curve Slab	2ft 4ft 2ft 1nter Slope Curve	ated	fir fir fir Slope Curve	nfiltrat LF Ach 1007(.89) 1005(.65)	ope/.0016
B. sm					R 5 R 5 R 16 R - 16	Unhe	R-6 R-11 R-19 R-30	1	S

Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .000 2.14 R-732 1.13 R-1137 .98 R-1344 .75 R-2752 .39 R-3455 .39	Slope(DD) 493.41 Curve(DDS) -17.864 Heated Basement (/ft)	R-Ø92 .87 R-5 4ft9763 R-5 8ft9763 R-1Ø 4ft9897 R-1Ø 8ft9763 Intercept .000 Slope(DD) -94.77 Curve(DDS) 3.003	Crawl (/sf)	R-0 1.58 R-11 flr .28 2.04 R-19 flr .29 2.06 R-30 flr .32 2.11 R-38 flr .35 2.11 R-49 flr .35 2.16 Intercept 2.177 Slope(DD) -78.23 Curve(DDS) -7.546	Window U-value (/sf) 1-Pane .00 .08 2-Pane0958 3-Pane0740 R-100419	Slope(DD) -90.87 Curve(DDS) 3.562 8.43 MBtu 4.42 MBtu 1.05 MBtu
Ö	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 4.33 R-7 -1.57 1.72 R-11 -1.82 1.30 R-12 -2.05 .93 R-22 -2.13 .79 R-30 -2.24 .60 R-38 -2.31 .48 R-49 -2.37 .38 R-60 -2.42 .31	Slope(DD) 863.84 Curve(DDS) -22.395 Slab (/ft)	R-6 -1.14 -6.63 R-5 2ft -1.09 -4.97 R-5 4ft -1.06 -3.80 R-10 2ft -1.08 -4.47 R-10 4ft -1.04 -3.13 Intercept .195 Slope(DD) -1129.15 Curve(DDS) 46.225	Unheated Basement (/sf)	R-0 R-11 flr92 .04 R-19 flr30 1.08 R-30 flr20 1.25 Intercept 1.723 Slope(DD) -647.56 Curve(DDS) 62.424	Infiltration (/sf flr) ELF Ach .0007(.68) .00 .44 .0005(.49)16 .31 .0003(.29)32 .18	Slope/.001ELF .562 Curve/.001ELF .104 Base Load = Typicaf Load = Residual Load =
ating Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 R-11 -8.95 18.74 R-13 -10.25 14.65 R-19 -10.89 15.72 R-34 -12.70 6.89	Slope(DD) 8891.27 Curve(DDS) -29.383 Heated Basement (/ft)	R-0 R-5 4ft -14.98 133.54 R-5 8ft -15.72 108.87 R-10 4ft -15.58 113.71 R-10 8ft -16.65 77.87 Intercept .000 Slope(DD) 8071.34 Curve(DDS) -62.726	Crawl (/sf)	R-0 R-11 flr -15.80 5.32 R-19 flr -18.53 .77 R-30 flr -20.66 -2.12 R-49 flr -21.80 -4.68 Intercept -9.054 Slope(DD) 8961.55 Curve(DDS) -199.906	WindowwU- 1-Pane 2-Pane 3-Pane R-10	Slope(DD) 8407.35 Curve(DDS) -11.238 121.82 MBtu 41.03 MBtu 3.77 MBtu
Н	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 50.86 R-7 -18 63 19.81 R-11 -21.60 14.85 R-19 -24.28 10.40 R-30 -26.54 8.73 R-38 -27.32 5.32 R-49 -27.39 4.22 R-60 -28.42 3.50	Slope(DD) 9590.92 Curve(DDS) -170.816 Slab (/ft)	R-0 -16.10 96.21 R-5 2ft -17.61 45.87 R-5 4ft -18.06 31.04 R-10 2ft -17.89 36.71 R-10 4ft -18.51 16.04 Intercept -27.017 Slope(DD) 13593.62	Unheated Basement (/sf)	R-0 R-11 flr -16.91 3.47 R-19 flr -18.64 .57 R-3Ø flr -19.76 -1.29 Intercept -6.548 Slope(DD) 7275.23 Curve(DDS) -752.608	Infiltration (/sf flr) ELF Ach .0007(.89) .00 29.73 .0005(.65)-10.78 20.74 .0003(.40)-21.09 12.15	Slope/.001ELF 39.041 Curve/.001ELF 4.896 Base Load = Typical Load = Residual Load =

MApartment Prototype Siding

WYEC

Bismarck ND

		mponent (KBtu)	(/sf) 3.1f) 1.67 1.46 1.13 72 72	738.23 -27.742 (/ft)	8.1.1.38.3.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	2 . 23 2 . 23 2 . 45 2 . 44 2 . 398 2 . 398 7 . 84	(/sf) 4.54 2.43 1.56	234.85 -2.377
	ס	Delta Co (MBtu)		e(DD) e(DDS) asement	-2.82 -3.22 -3.23 -3.32 -3.34 copt e(DD)	.00 .36 .34 .32 .32 .32 .32 .00)	value 	e (DDS) e (DDS) MBtu MBtu MBtu
	Cooling Load	_	W W B B B B B B B B B B B B B B B B B B	Slope Curve Heated Ba	-6 -5 4ft -16 8ft -10 8ft Slop Curv	Craw! R-0 R-11 flr R-19 flr R-30 flr R-49 flr R-49 flr R-40 flr Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 20.80 M 5.46 M
	Coo	ponent (KBtu)	(/sf) 6.65 2.67 2.04 1.47 1.25 77 .60	377.36 43.127 (/ft) 1	7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	7 (st) ((st) () () () () () () () () ()	sf flr) .48 .35	.747 081 e Load = Load =
7¥0		elta Com (MBtu)	. 60 -6.12 -7.10 -7.10 -7.98 -8.32 -8.78 -9.06 -9.32	(00) 1 (00s) -	-4.33 -4.08 -4.14 -4.14 -4.02 -60pt (DD) -	3a sement -2.82 -1.33 89 60 (DD) -	tion (/) .000)20)41	Ø BELF Ø BELF Ppical Typical Residual
Series		٩	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	Slope Curve Slab	SI 4 2 4 5 4 5 6 7 6 7 6 7 6 7 6 7 7 9 9 9 9 9 9 9 9 9	Unheated b R-0 R-11 flr R-19 flr R-30 flr Interc Sloped	Infiltra ELF Ach .0007(.56 .0005(.40 .0003(.24	Slope/.Ø Curve/.Ø
Siding		ent tu)	95) 100 100 100 100 100 100 100 100 100 10	38 96 t)		if) 71 25 36 36 36 77 77 80 87	if) 70 53 94 02	87 56
type		ompon (KB	(/s 300 300 300 11 11 11 11 10 10 10 10 10 10 10 10 1	6311. -105.0	2 102 2 688 2 59 2 59 8 40 4 40 3 - 45.	(/s 2 17. 2 17. 2 17. 5 14. 5 14. 5 15. 6 15. 9 15.	(/s 0 142. 9 67. 3 42. 8 14.	6013. -23.0
Prototyp	70	Delta C. (MBtu)	24.88.32 29.76 20.76 20.76 20.76	e (DD) e (DDS) asement	-18.9 -15.9 -17.9 -17.4 -28.4 (DD)	-28.4 -38.9 -33.6 -34.3 -36.1 -36.1 (DD)	value . 0 -13.8 -18.4 -23.7	(DD) (DDS) (Btu (Btu
5	à	-				∟ o o	ί σοσ	00 333
Sto	ing L		¥	Slop Curv eated B	11120		indow U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 156.15 ME 49.29 ME 6.68 ME
One Sto	ng L	nent Btu)	2.8f) 2.8f) 3.13 3.13 8.7 7.15 8.15 8.14 8.29 8.31 8.31 8.31 8.31 8.31	7.88 Slop .322 Curv /ft) Heated B	4.75 R-6 3.36 R-5 4ft 4.27 R-5 8ft 7.52 R-10 4ft 5.05 R-10 8ft 3.46 S-10 8ft	/sf) Crawl 1.07 R-0 1.34 R-11 flr 1.34 R-19 flr 3.07 R-30 flr R-30 flr R-49 flr 697 Slope 8.91 Slope	fir) Window U- 21 1-Pane 46 2-Pane 80 3-Pane R-10	.384 Slope .218 Curve Load = 156.15 W Load = 49.29 W Load = 6.68 W
Sto	eating L	omponen (KBtu	(/sf) Wal 32.86 R-0 37 13.13 R-7 22 9.98 R-1 58 7.15 R-1 26 6.06 R-2 10 2.92 R-3 10 2.92 R-3	6687.88 Slop -193.322 Curv (/ft) Heated B	18 54.75 R-Ø 39 23.36 R-5 4ft 9Ø 14.27 R-5 8ft 36 17.52 R-1Ø 4ft 43 5.05 R-1Ø 8ft -20.883 Inte 853.45 Slope -155.085 Curv	22 11.07 R-0 22 13.4 R-11 flr 33 -1.34 R-19 flr 99 -3.07 R-38 flr R-38 flr R-38 flr R-49 flr -7.697 Slope -512.712 Curve	(/sf flr) Window U- .00 16.21 1-Pane .32 11.46 2-Pane .49 6.80 3-Pane R-10	1.218 Slope 1.218 Curve b Load = 156.15 W Load = 49.29 W Load = 6.68 W
One Sto	eating L	onen KBtu	(/sf) Wal 32.86 R-9 37 13.13 R-7 22 9.98 R-1 58 7.15 R-1 56 6.06 R-2 88 3.71 R-3 88 2.41	6687.88 Slop 193.322 Curv (/ft) Heated B	-18.18 54.75 R-0 -23.39 23.36 R-5 4ft -24.90 14.27 R-5 8ft -24.36 17.52 R-10 4ft -26.43 5.05 R-10 8ft rcept -20.883 Inte B(DD) 853.45 Slop e(DDS) -155.085 Curv	22 11.07 R-0 22 11.07 R-11 flr 33 -1.34 R-11 flr 99 -3.07 R-30 flr R-38 flr R-38 flr R-49 flr -7.697 Slope -512.712 Curve	(/sf flr) Window U- 0 16.21 1-Pane 2 11.46 2-Pane 9 6.80 3-Pane R-10	2.304 Slope 1.218 Curve Load = 156.15 W Load = 49.29 W Load = 6.68 W

	•							
	Component (KBtu)	(/sf) 3.49 1.86 1.62 1.24 1.06 64	817.95 -31.359 (/ft)	2.15 10 60 35 -68.57	(/sf)	1.81 2.14 2.14 2.14 2.14 2.095 80.27 26.498	(/sf) 2.45 1.14 .72 .23	99.38
	elta ((MBtu)	.00 78 89 -1.07 -1.16 -1.28	(DD) (DDS) - sement	-1.00 -1.09 -1.09 -1.11 -1.11 (OD) (DD)		.00 .21 .20 .20 .20 .20 .20 (00) (00) (00S)	value 00 19 25	(DD) (e (DDS) MBtu MBtu MBtu
Cooling Load	۵	M R R B B B B B B B B B B B B B B B B B	Slope Curve Heated Bas	R-6 4ft R-5 4ft R-10 4ft R-10 8ft Inter- Slope Curve	Crawl	R-11 flr R-19 flr R-30 flr R-38 flr R-49 flr R-49 flr Slopel	Window U-v 1-Pane 2-Pane 3-Pane R-10	Slope Curve 13.28 Mf 7.13 Mf 1.90 Mf
Coo	Component (KBtu)	(/sf) 6.75 2.75 2.11 1.54 1.30 .99 .63	449.07 52.284 (/ft) I	-13.85 -12.35 -11.63 -12.10 -10.85 -8.145 975.75	(/sf) (.14 1.04 1.34 1.53 2.049 16.49	sf flr) .30 .18 .09	
	elta ((MBtu)	-2.40 -2.79 -3.13 -3.27 -3.57 -3.67 -3.67	(00) 1 (008) -	-1.64 -1.58 -1.55 -1.57 -1.57 (00) -	Basement	-1.00 46 28 17 17 (00) (DDS) 6	tion (/ 00 14)15	Ø1ELF Ø1ELF Base Typical Residual
	۵	Ce i	Slope Curve Slab	R-0 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter Slope Curve	Unheated	R-0 R-11 flr R-19 flr R-3Ø flr Intercept Slope(DD) Curve(DDS)	Infiltrat ELF Ach .0007(.56) .0005(.40) .0003(.24)	Slope/.0011 Curve/.0011
	Component (KBtu)	(/sf) 29.62 13.82 11.57 8.96 7.67 5.54	389.99 21.901 (/ft)	117.25 69.50 56.25 58.75 40.00 .000 145.31	(/sf)	18.13 2.33 2.33 1.04 1.04 1.33 1.34 1.33 1.34 1.35 1.33 1.34 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	(/sf) 123.05 52.70 33.20 10.27	336,90 12,270
	elta ((MBtu)	-7.53 -8.60 -9.84 -10.46 -11.48	(DD) 5 (DDS) sement	-6.19 -8.10 -8.63 -8.53 -9.28 (DD) 4		.00 -9.50 -11.10 -12.04 -12.26 -12.88 cept (DD) 4	. 00 : -10.13 -12.94 -16.24	oe(DD) 43 oe(DDS) 1 MBtu MBtu MBtu
ating Load	۵	X X X X X X X X X X X X X X X X X X X	Slope Curve Heated Bas	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Slope Curve	Crawl	R-11 flr R-13 flr R-30 flr R-38 flr R-49 flr R-49 flr Slope	Window U- 1-Pane 2-Pane 3-Pane R-10	Stope Curve 72.83 MI 20.24 MI 4.71 Mi
Неа	oonent (KBtu)	(/sf) 34.15 13.16 9.81 6.80 5.74 4.32 2.75	233.86 79.941 (/ft) H	50.75 19.50 11.50 14.25 3.50 17.474 646.82	(/sf) (7.82 1.95 01 -1.27 4.752 88.31 5.800	sf flr) 13.90 9.32 5.23	5.624 6.042 Load = Load = Load = Load
	(MBtu)		- (\$00) 9 (00)	-8.85 -10.10 -10.42 -10.31 -10.74 -10.74 (DD) 6 (DD) 6	Basement	-6.19 -9.71 -10.88 -11.64 -11.64 (DD) 47 (DDS) -45	tion (/ .000) -5.49)-10.40	ØJELF ØJELF Base Typical Residual
	۵	C 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Slope Curve Slab	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter Slope Curve	Unheated	R-0 R-11 flr R-19 flr R-30 flr Inter Slope Curve	Infiltra ELF Ach .0007(.78 .0005(.58	Slope/.ø Curve/.ø

WYEC Mid Town Prototype Siding

Boise ID

	ponent (KBtu)	(/sf) 3.26 1.74 1.53 1.20 1.04 .77	786.42 33.407 (/ft)	2.06 .39 .56 11 .000 -10.65	(/sf)	1.61 1.93 1.93 1.87 1.85 1.788 1.788 1.43.43	3.17 1.54 .98	139.56	
	elta Com (MBtu)		(DD) (DDS) - sement	91 95 95 97 96 96 (DD) (DD)		.000 .18 .18 .16 .15 .15 .15 .15 .10 .10 .10 .10	value 	e(DD) e(DDS) MBtu MBtu MBtu	
Cooling Load	Õ	**************************************	Slope Curve Heated Ba	R-6 8-5 4ft R-5 8ft R-10 4ft R-10 8ft Inter- Slope	Crawl	R-0 R-11 flr R-19 flr R-30 flr R-49 flr R-49 flr Slope Curve	Window U-1 1-Pane 2-Pane 3-Pane R-10	S-0000 Curve 11.51 MS 5.88 MS 65 MS	,
Coo	ponent (KBtu)	(/sf) 6.77 6.77 1.54 1.54 1.99 80 .63	451.64 52.111 (/ft)	-8.44 -7.11 -6.28 -6.78 -5.61 -5.61 973.60	(/sf)	.10 .83 1.07 1.22 1.643 581.30 54.791	/sf flr) .40 .27 .15	6 - 158 158 158 158 111	
o * *	(MBtu) (A	00 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	(DD) 1 (DDS) -	-1.22 -1.18 -1.16 -1.17 -1.17 e(DD) -	Basement	fir47 fir33 fir23 fir23 cure(DD)	ation (h .000 (6) .000 (9)16 (4)30	.001ELF .001ELF Typica Residua)))
Series	Δ	R R R R R R R R R R R R R R R R R R R	Slope Curve Slab	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Slope Curve	Unheated	R-10 R-10 R-10 R-30 Flr Inter Slope Curve	Infiltrat ELF .0007(.56) .0005(.40) .0003(.24)	Slope/.8 Curve/.8	
Siding	onent (KBtu)	/sf) 9.72 3.58 1.28 8.71 7.34 4.07	4.17 .930 /ft)	1.03 2.28 6.52 9.28 7.03 7.03 7.16	(/sf)	3.48 3.48 .74 87 -1.24 -2.36 34.623	(/sf) 21.99 50.67 31.82 9.66	.324	
rototype	Comp		515) 68 ht (75 14 51 8 98 6 99 6 57 4 784 484		328333	.00 12 .00 12 0.27 5 2.98 3 6.18	405	
Δ.	Delta (MBt		lope(DD) urve(DDS) d Basemen	4ft -9 8ft -9 4ft -9 8ft -10 8ft -10 iope(DD)		fir -112, fir -12, fir -12, fir -13, intercept lope(DD) urve(DDS)	U-val ane ane -1	Slope (DD) Curve (DDS) .43 MBtu .14 MBtu	: r
MApartment eating Load		≆αάαααααααα	S Heate	R R - 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Crawl	RR R R R R R R R R R R R R R R R R R R	r) Window 1-P 2-P 3-P R-1	1 1 8 8 0 N N N N N N N N N N N N N N N N N)
WYEC	ponent (KBtu)	(/sf) 33.12.68 12.68 6.38 6.38 5.38 4.62 2.57 2.57	8Ø2.16 36.494 (/ft)	76.8 37.6 28.6 31.2 18.8 18.8 922.1	(/sf)	7.05 2.28 2.28 54 57 -3.698 1311.44	13.60 9.02 4.99	14.542 6.979 6.979	ב ב
	elta Com (MBtu)	-12.31 -12.31 -14.27 -16.64 -17.95 -17.95 -18.33	(00) 2 (00)	-9.85 -10.87 -11.14 -11.05 -11.41 cept (DD) 7	Basement	-7.75 -10.61 -11.66 -12.32 -12.32 (00) (00) 4	tion (.088) -5.58)-10.33	Ø1ELF Ø1ELF Bas Typica	00.80
Boise ID	۵	C 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Slope Curve	R-0 R-5 2ft R-5 2ft R-10 2ft R-10 4ft R-10 4ft Slope Curve	Unheated	R-0 R-11 flr R-19 flr R-30 flr Inter Slope	Infiltra ELF Ach .0007(.77 .0005(.58	Stope/.Øl Curve/.Øl	

	mponent (KBtu)	(/sf) 1.66 1.96 .79 .63 .64 .54	412.87 -19.532 (/ft)	2.000 1.76 1.34 1.004 000 91.26	(/sf)	2.07 2.52 2.53 2.59 2.59 2.61 2.61 2.631 2.631	1.4 1.4 1.6 1.5 1.0	85.67 -1.179
_	elta Com (MBtu)	.00 85 - 1 .97 - 1 .16 - 1 .25 - 1 .11	(DD) (DDS) sement	-2.49 -2.85 -2.89 -2.96 -3.01 (DD) (DD)		.000 .70 .77 .80 .80 .81 .81 .83 .60 .60	. 000 	(DD) (DDS) (DDS) Btu Btu Btu
Cooling Load	۵	Wall R-0 R-1 R-11 R-13 R-34 R-34	Slope Curve Heated Bas	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Inter S-0pe	Crawl	R-6 R-11 fr R-13 fr R-30 fr R-38 fr Inter Sclope		Slope(Curve(Curve) 12.82 MB 4.09 MB -2.66 MB
ŭ	mponent (KBtu)	(\square\) (\$s\) 1.36 1.36 1.007 1.81 5.83 5.43 5.84	783.17 -42.224 (/ft)	-2.63 -1.73 -1.19 -1.65 77 1.005 587.52 23.623	t (/sf)	2.17 2.17 2.17 2.711 2.711 56.737	٠ س	1.006 .000.
	Deita Component (MBtu) (KBtu)	. 00 -2.77 -3.21 -3.61 -4.06 -4.21 -4.21 -4.34 -4.34	(00) (008)	-3.62 -3.47 -3.38 -3.44 -3.31 rcept e(DD) e(DDS)	Basement	-2.49 64 15 15 .16 (00) -(00)	tion 00	001ELF 001ELF Base Typica Residua
		C	S Curve	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter Slope Curve	Unheated	R-11 flr R-19 flr R-30 flr Inter Slope Curve	r n r re e	Slope/.0 Curve/.0
	omponent (KBtu)	(/sf) 32.05 15.69 13.36 10.54 9.14 6.57 5.00	6532.83 106.827 (/ft)	100.04 68.59 56.60 60.04 41.54 4292.73	(/sf)	19.37 15 -3.40 -5.41 -5.87 -7.20 -10.237 -7.20	(/sf) 158.75 73.90 46.92 15.19	501.80 18.505
77	Delta Co (MBtu)	.00 -18.38 -21.00 -24.17 -25.74 -30.40	(DD) (DDS) - sement	-13.23 -18.45 -20.44 -19.87 -22.94 (OD) (DDS)		.88 -38.87 -35.87 -38.17 -38.88 -48.92 -600t -	. 60	(DD) 6 (DDS) - Btu Btu Btu
Heating Load	Ü	Wall R-0 R-1 R-11 R-13 R-27 R-34	Slope Curve Heated Ba	R-6 R-5 R-5 R-5 R-10 4ft R-10 8ft Inter S-000	Crawi	R-6 R-11 flr R-19 flr R-38 flr R-38 flr R-9 flr Slote Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 175.80 M 60.30 M 7.14 M
H	omponent (KBtu)	(/sf) 33.45 13.35 10.14 7.26 6.15 4.67 3.77 2.96 2.96	6780.42 192.163 (/ft)	52.69 21.30 11.90 15.40 2.27 2.27 2.27 2.27 4.8397.27	t (/sf)	10.78 -2.45 -4.31 -9.319 6802.93 562.190	(/sf flr) 22.31 15.86 9.47	31.363 .731 .6 Load = 1 Load = 1 Load = 1
	Delta Com (MBtu)	00. 1.35.90 1.46.33 1.46.34 1.45.76 1.45.76 1.45.77 1.45.76	- (sgg) - (ggs)	-21.09 -26.30 -27.86 -27.28 -29.46 -29.46 (DD) (DD)	Ваѕетеп	-13.23 -29.16 -33.62 -36.48 cept (DD) (DD)	tion () .000 () -9.93	Ø1ELF Ø1ELF Bas Typica Residua
	J	0	Slope Curve Slab	R-0 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Slope Curve	Unheated	R-0 R-11 f-r R-19 f-r R-3Ø f-r Slope Curve	Infiltra ELF Ach .0007(.91 .0005(.67	Slope/.003 Curve/.003

One Story Prototype Siding Series Two

WYEC

Boston MA

					•			
		nponent (KBtu)	(/sf) 1.36 1.88 .58 .42 .42 .35	271.65 -3.607 (/ft)	;	1.76 2.54 2.65 2.65 2.65 2.69 2.986 2.986 2.986 2.986	(/sf) -1.68 -1.61 -1.07	196.34 5.021
	ooling Load	Delta Com (MBtu)	Wall R-0 R-7 .32 R-11 -37 R-13 -44 R-19 -44 R-27 -52	Slope(DD) Curve(DDS) Heated Basement	R-6 R-5 4ft99 R-5 8ft99 R-10 4ft -1.01 R-10 8ft -1.01 Slope(DD) Curve(DDS)	R-0 R-11 flr .38 R-19 flr .58 R-30 flr .55 R-38 flr .55 Intercept .59 Slope(DD) -	Window U-value 1-Pane .00 2-Pane .01 3-Pane .09 R-10 .18	Slope(DD) - Curve(DDS) 9.12 MBtu 5.89 MBtu 2.11 MBtu
	S	ponent (KBtu)	(/sf) 3.02 1.22 1.22 67 67 36 28	635.74 21.177 (/ft)	8 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.529 781.24 1.95 2.529 781.24	/sf flr) .50 .35	. 708 . 6000 . Load ::
Series Two		Delta Com (MBtu)	Ceiling R-0 R-7 R-11 -1.08 R-19 -1.41 R-22 -1.41 R-38 -1.55 R-49 -1.65 R-60 -1.65	Slope(DD) Curve(DDS) -: Slab	-6 2ft -1.36 -5 2ft -1.31 -10 2ft -1.27 -10 4ft -1.27 -10 4ft -1.24 Intercept Slope(DD) -1 Curve(DDS) -1	Intercept Slope(DDS) - Curve (DDS)	Infiltration (/ ELF Ach 0007(.73) .00 0005(.52)17 0003(.31)34	Slope/.001ELF Curve/.001ELF Base Typical Residual
Town Prototype Siding	g Load	Delta Component (MBtu) (KBtu)	Wali R-0 31.27 R-7 -7.85 14.79 R-11 -8.97 12.44 R-13 -10.26 9.73 R-19 -10.90 8.39 R-27 -12.03 6.02 R-34 -12.72 4.57	Slope(DD) 5898.01 Curve(DDS) -15.849 ted Basement (/ft)	4ft -9.43 75 8ft -9.48 61 0 4ft -9.87 64 0 8ft -10.68 43 Intercept 1374 Curve(DDS) -333.	1 flr -11.12 2.1 3 flr -12.948 6 flr -14.05 -2.6 8 flr -14.05 -2.6 9 flr -15.03 -4.3 Intercept -7.12 Slope(DD) 5659.0 Curve(DDS) -44.51	1-Pane .00 145.04 .2-Pane -11.84 62.82 .3-Pane -15.18 39.62 .R-10 -19.11 12.33	Slope(DD) 5219.61 Curve(DDS) 10.395 5.28 MBtu 6.77 MBtu 1.58 MBtu
WYEC Mid	Heatin	Component u) (KBtu)	(/sf) 34.92 13.56 10.15 7.08 4.51 2.87 2.87	106.568 (/ft) Hea	54.33 R- 21.83 R- 12.83 R- 16.08 R- 3.58 R- 7543.72	8.16 1.69 1.69 -1.88 -1.88 5315.57 507.945	(/sf flr) Wi 20.41 14.11 8.18	25.875 4.688 se Load = 8 af Load = 2
Boston MA		Delta Co (MBtu)	Ceiling R-0 R-7 R-1 R-11 R-19 R-16.70 R-30 R-30 R-38 R-49 R-49 R-49 R-60 R-60 R-19.23	Slope(DD) Curve(DDS) Slab	5 2ft -11.5 5 4ft -11.9 10 2ft -11.9 10 4ft -12.2 Intercept Slope(DD) Curve(DDS)	-0 -11 flr -19 flr -30 flr Slope Curve	Infiltration ELF Ach .0007(.93) .000 .0005(.68) -7.56 .0003(.42)-14.67	Slope/.001ELF Curve/.001ELF Base Typica Residua

		Component (KBtu)	Ş. 	58	382.81 -22.322 (/ft)	-162.	(/sf)		-124.08 -6.612 (/sf)	7.7	.326.28 8.737	
	70	Delta Co (MBtu)			e(DD) e(DDS) asement	じこ こ		Ω. Θ.	(SC)		- (sag) - (da)	MBtu MBtu MBtu
	Cooling Load		- 6	R-11 R-13 R-27 R-34	Slope Curve Heated Bas	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Inter Slope	Crawl	t	- C O D → C O	4444	Slope	8.07 ME 5.20 ME 1.79 ME
	ŭ	omponent (KBtu)	201-	7. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	460.65 2.590 (/ft)	-6.72 -5.05 -4.72 -4.88 -3.88 -1.927 -652.68	; (/sf)	20. 11 . 12 . 12 . 12 . 12 . 12 . 12 . 1	-6/0.49 60.133 (/sf flr)	. 40 . 28 . 16	.500	b Load = Load = Load =
:		Delta Co (MBtu)	0,00	-1.23 -1.58 -1.58 -1.58 -1.59	(saa) (aa)	-1.044 99 98 99 95 (OD) -(DDS)	Basement	82 100 000 000	(on lon		Ø1ELF Ø1ELF	Base Typical Residual
•		_	.00.		Slope Curve	R-6 R-5 2ft R-5 4ft R-10 10 ter Slope Curve	Unheated	R-11 flr R-13 flr R-30 flr R-30 flr	Slope Curve Infiltra	ELF Ach .0007(.73) .0005(.52) .0003(.31)	Slope/.0011 Curve/.0011	
		omponent (KBtu)	£ 4.0.	9.52 9.52 8.17 4.45	5697.56 28.509 (/ft)	145.63 88.13 71.30 74.80 51.13 .000 .000 -36.393	(/sf)	22.41 3.35 -1.61 -2.04 -3.27	38.	143.54 6Ø.21 37.85 11.56	864.67 21.685	
	771	Delta Co (MBtu)	0.6.	-6.96 -7.38 -8.12 -8.56	(DD) (DDS) sement	-9.07 -10.80 -11.31 -11.20 -11.91 cept (DD) (DDS)		-11.43 -13.28 -14.41 -14.66 -15.41	(DDS)	.00 -12.00 -15.22 -19.01	(00) 4 (00s)	MBtu MBtu MBtu
	Heating Load		- 0	R - 13 R - 13 R - 24 R - 34	Slope Curve Heated Bas	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Slope Curve	Crawi	R-6 R-11 f-r R-13 f-r R-38 f-r R-49 f-r R-40 f-r R-10 f-r	- ⊃ }	1-Pane 2-Pane 3-Pane R-10	Slope	80.84 MI 24.68 MI 1.96 MI
	H	omponent (KBtu)	st	2.7.2 2.7.2 2.7.2 2.7.2	3163.12 -69.124 (/ft)	71.13 36.96 27.30 30.96 17.63 -9.237 6056.15	(/sf)	7.28 2.04 .11 -1.13 -4.604	84.196 /sf flr)	20.24 13.93 8.64	25.229 5.261	
		elta ((MBtu)	ng6 -12.6	-16.42 -17.06 -17.90 -18.41 -18.84	- (SQQ) - (QQ)	-11.31 -12.63 -12.63 -12.51 -12.91 (ob) BB (DD) BB	Basement	22 38 112	4)) -7.57)-14.63	.001ELF	Base Typica Residua
		۵	. o	. R.	Slope Curve Slab	R-6 R-5 2ft R-5 2ft R-10 2ft Interc Slope Curve	Unheated	R-0 R-11 flr -12 R-19 flr -13 R-30 flr -14 Intercept	Curve Infiltra	0.004	Slope/.06 Curve/.06	

MApartment Prototype Siding Series Two

WYEC

Boston MA

		component (KBtu)	(/sf) 5.68 2.54	6	4	9.		952.87 19.233	(/ft)	41.40 37.78 36.88 36.64 35.25 31.627 402.70	(/sf)	7.30 6.27 5.88 5.85 5.46 5.25 4.715 1148.62	(/sf) 7.66 1.76 1.02 .14	37.39 9.578	
	ooling Load	Delta Con (MBtu)	Wall R-0 .00 R-7 -3.53	-11 -4.0	-19 -4.7	-27 -5.2 -34 -5.5		Slope(DD) Curve(DDS)	leated Basement	-6 4ft -4.37 -5 8ft -5.12 -10 4ft -5.18 -10 8ft -5.39 Intercept Slope(DD) Curve(DDS)] wer:	-0 -11 flr -1.58 -19 flr -2.72 -30 flr -2.73 -49 flr -3.16 Intercept Slope(DD) Curve(DDS) -	Vindow U-value 1-Pane .000 2-Pane -1.09 3-Pane -1.23 R-10 -1.39	Slope(DD) Curve(DDS)	76.72 MBtu 45.57 MBtu 11.31 MBtu
Series Two	Cool	Delta Component (MBtu) (KBtu)	8 6	-11 -10.88 2.8	-13 -12.23 1:3 -22 -12.70 1.6	-30 -13.32 1.2	-49 -14.05 .8 -60 -14.27 .6	Slope(DD) 1823.09 Curve(DDS) -25.187	Slab (/ft) H	R-6 -10.29 5.74 R R-5 2ft -10.88 2.18 R R-5 4ft -11.01 1.40 R R-10 2ft -11.01 1.40 R R-10 4ft -11.09 .92 R Intercept .000 Slope(DD) 173.02 Curve(DDS) 39.432	Unheated Basement (/sf) C	R-0 R-11 flr -3.60 4.96 R R-19 flr -3.72 4.88 R R-30 flr -3.72 4.88 R Intercept 4.744 Slope(DD) 220.56 Curve(DDS) -53.728	Infiltration (/sf flr) W ELF Ach .0007(.68) .00 9.82 .0005(.48) -4.01 7.22 .0003(.30) -8.27 4.45	Slope/.001ELF 15.455 Curve/.001ELF -2.029	Base Load = Typical Load = Residual Load =
One Story Prototype Siding	ating Load	Delta Component (MBtu) (KBtu)	6.4	-11 -2.80 1.1	-13 -3.15 .0 -19 -3.32 .7	-27 -3.55 .5	4. 20.21	Slope(DD) 471.10 Curve(DDS) 39.783	Heated Basement (/ft)	-0 -5 4ft -5 8ft -10 8ft Interc Slope Curve	Crawl (/sf)	R-0 .00 2.78 R-11 fir -3.25 .67 R-19 fir -3.65 .41 R-30 fir -3.85 .28 R-38 fir -3.90 .25 R-49 fir -4.03 .16 Slope(DD) 351.90 Curve(DDS) 38.091) Window U-value (/sf) 1-Pane . ØØ 13.25 2-Pane -1.66 4.27 3-Pane -1.97 2.6Ø R-10 -2.33 .64	Slope(DD) 251.45 Curve(DDS) 9.489	= 19.74 MBtu = 5.45 MBtu = .19 MBtu
Brownsville TX WYEC	ө н	Delta Component (MBtu) (KBtu)	eiling (/sf	-/ -4.8/ 1.8 -11 -5.64 1.3	-19 -6.34 .8	-30 -6.84 .5	R-38 -7.01 .42 R-49 -7.14 .34 R-60 -7.22 .29	Slope(DD) 757.24 Curve(DDS) 13.772	Slab (/ft)	2ft -4.18 4ft -4.23 4ft -4.22 6ft -4.26 6lope(DD) -58. iurve(DDS) 31.2	Unheated Basement (/sf)	R-0 -3.15 .73 R-11 fir -3.98 .19 R-19 fir -4.13 .10 R-30 fir -4.23 .03 Intercept123 Slope(DD) 202.10 Curve(DDS) -6.857	(/sf flr .00 1.47 .97 .84 .68 .37	Slope/.001ELF .617 Curve/.001ELF 2.110	Base Load : Typical Load : Residual Load :

ing Load	Delta Component (MBtu) (KBtu)	Wali R-0 .00 5.12 R-7 -1.33 2.33 R-11 -1.52 1.93 R-13 -1.73 1.50 R-19 -1.83 1.28 R-27 -2.00 .92 R-34 -2.11 .70	Slope(DD) 882.80 Curve(DDS) 12.967 eated Basement (/ft)	-6 4ft -1.59 60.21 -5 8ft -1.77 55.71 -5 8ft -1.80 54.96 -10 4ft -1.82 54.46 -10 8ft -1.84 53.96 Intercept 52.238 Slope(DD) 149.11 Curve(DDS) 1.629	awl (/sf)	-0 .00 6.66 -11 flr18 6.36 -19 flr40 6.00 -30 flr50 5.83 -38 flr52 5.80 -49 flr58 5.69 Intercept 5.218 Slope(DD) -113.015	.00 -5.5 .38 -8.2 .01 -5.5 .46 -2.3	Slope(DD) -1089.67 Curve(DDS) 33.279 62.15 MBtu 39.13 MBtu 17.07 MBtu
Cooling	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 9.10 R-7 -3.48 3.31 R-11 -4.03 2.39 R-19 -4.53 1.55 R-22 -4.67 1.32 R-36 -4.86 1.01 R-38 -4.97 .82 R-49 -5.09 .62 R-60 -5.17 .49	Slope(DD) 1387.94 Curve(DDS) 24.923 Slab (/ft) H	R-6 -3.91 2.21 R R-5 2ft -4.0379 R R-5 4ft -4.0379 R R-10 2ft -4.05 -1.29 R R-10 4ft -4.04 -1.04 R Intercept .000 Slope(DD) -582.45 Curve(DDS) 79.563	Unheated Basement (/sf) Cr	R-0 R-11 fir -1.69 4.01 R-19 fir -1.07 4.88 R-19 fir -1.07 4.88 R-19 R-19 fir -1.06 4.90 R-19 R-19 fir -1.06 4.90 R-19 fir -1.06 4.90 R-19 fir -1.06 Fir -1.06 A.90 Curve(DDS) -47.740	Infiltration (/sf flr) Wi ELF Ach .0007(.68) .00 9.56 .0005(.49) -2.94 7.11 .0003(.30) -6.15 4.43	Slope, @01ELF 15.625 Curve, .001ELF -2.812 Base Load = Typical Load = Residual Load =
eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-796 1.31 R-11 -1.10 1.03 R-13 -1.23 .76 R-19 -1.29 .63 R-27 -1.38 .45 R-34 -1.43 .33	Slope(DD) 389.11 Curve(DDS) 42.970 Heated Basement (/ft)	R-0 R-5 4ft -1.25 6.72 R-5 8ft -1.45 1.72 R-10 4ft -1.45 1.72 R-10 8ft -1.48 .97 Intercept .062 Slope(DD) 66.00 Curve(DDS) 2.908	Crawl (/sf)	R-0 R-11 flr -1.07 .75 R-19 flr -1.20 .53 R-30 flr -1.27 .42 R-38 flr -1.28 .40 R-49 flr -1.32 .33 Intercept .174 Slope(DD) 286.61 Curve(DDS) 33.781	Window U-value (/sf) 1-Pane .00 10.91 2-Pane -1.11 3.21 3-Pane -1.29 1.93 R-10 -1.51 .43	Slope(DD) 159.54 Curve(DDS) 9.617 8.49 MBtu 2.79 MBtu .54 MBtu
He	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 4.86 R-1 -2.20 1.70 R-11 -2.20 1.20 R-22 -2.47 .74 R-30 -2.64 .62 R-38 -2.70 .36 R-49 -2.77 .29 R-60 -2.77 .29	Slope(DD) 634.68 Curve(DDS) 31.181 Slab (/ft)	R-0 -1.43 2.22 R-5 2ft -1.48 .97 R-5 4ft -1.49 .72 R-10 2ft -1.49 .72 R-10 4ft -1.50 .47 Intercept .0000 Slope(DD) 131.62 Curve(DDS) 8.872	Unheated Basement (/sf)	-1.25 .45 -1.41 .18 -1.45 .12 -1.47 .08 ppt019 (D) 135.12 (DS) -8.565	trati Ach (.73) (.52) (.31)	Slope/.001ELF .083 Curve/.001ELF 2.188 Base Load = Typical Load = Residual Load =

Mid Town Prototype Siding

Brownsville TX WYEC

		omponent (KBtu)	(/sf) 5.45 2.55	777	→	1004.92 1.488	(/ft)	63.39 58.72 58.06 56.89 56.22 53.111 318.65	(/sf)	5.54 5.63 5.25 5.25 4.96 4.80 4.261 1085.37	(/sf) -3.12 -6.35 -4.31	879.07 28.817	
	ъ	Delta Co (MBtu)	80.0	-1.05 -1.20 -1.27	4.4.	e(DD) e(DDS)	sement	-1.42 -1.56 -1.61 -1.61 -1.63 (0D)		.000 .000 .017 17 35 35 44 (DD) 1 (DD) 1		- (sgg) - (gg)	Btu Btu Btu
	g Loa	_	Wall R-0	R-11 R-13 R-13	9 10	Slope	leated Ba		- ×e L		indow U- 1-Pane 2-Pane 3-Pane R-10	Slope	49.59 MI 37.69 MI 15.31 MI
	Coolin	mponent (KBtu)	(/sf) 9.53 3.51	. α. <u>4</u> .	1.04 .82 .67 .57	98.21 8.393	(/ft) H	5.39 R 1.22 R .72 R .72 R .22 R .966 13.86	(/sf) C	3.17 R 4.19 R 4.22 R 4.24 R 61.39 61.39	sf flr) W 9.54 7.16 4.50	6.042 3.438	IIII Load Load
Two		elta Comp (MBtu) (7.7.8.	-5.03 -5.32 -5.33	(00) 14 (00S) 1		-3.16 -3.28 -3.30 -3.30 -3.31 -3.31 -3.31 0D) -1	asement	-1.42 81 77 77 77 77	ion (/ .00 -2.86 -6.05	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Base Typical Residual
Series		۵	6	777	X X X X X X X X X X X X X X X X X X X X	Slope Curve	Slab	6 2ft 5 4ft 10 2ft 10 4ft Inter Slope Curve	heated B	11 fir 19 fir 30 fir Inter Slope Curve	Infiltrat ELF Ach 0007(.68) 0005(.49) 0003(.30)	lope/.001 urve/.001	- .
e i								~ ~ ~ ~ ~ ~	Ļ	0. 0. 0. 0.	н ш о о о	νO	
pe Sid		omponent (KBtu)	(/sf) 3.13 1.17	വയാ	. 28	308.68 50.882	(/ft)	5.00 .34 33 -1.00 -1.948 62.83	(/sf)	2.54 	10.29 3.60 1.80	146.96 9.201	
Prototy	_	elta C (MBtu)	900		ο. O.	(S00) (D08)	sement	-1.38 -1.54 -1.54 -1.54 -1.56 (DD) (DD)		-1.14 -1.26 -1.33 -1.35 -1.35 -1.39 (DD) (DD)	. 000 -1.05 -1.22 -1.43	(S00) (D08)	8tu 8tu 8tu
MApartment	ing Load	۵	-01-	1 1 1	N M I I	Slope	eated Ba	-0 -5 4ft -5 8ft -10 4ft -10 8ft Inter Slope Curve	- wer	-11 fl -19 fl -38 fl -49 flr Inter Slope Curve	indow U- 1-Pane 2-Pane 3-Pane R-10	Slope	7.90 M 2.51 M .64 M
Σ×	ā t:						I	~ ~ ~ ~ ~ ~	O	~ ~ ~ ~ ~ ~ ~	≯		
EC	H O	nent Btu)	. 4 S	• - 9 -	2.5.3.5 2.88.5.5 2.88.5.5	2.34	/ft)	.50 .50 .34 .34 .000 2.31	/sf)	. 027 . 027 . 022 . 032 . 085 . 085 . 533	f flr) 1.07 .55 .20	. 188	
WYE	•	Mpone (KBt	(/sf 0 4.9 5 1.7	200	4.6.2.			1.00 1.00 1.00 12.3 15.25	\$/)	530 530 530 104 .0 104 .0	(/sf fl 0 1.07 3 .55 5 .20	2.18	Base Load ical Load dual Load
I TX WYE	•	elta Compone (MBtu) (KBt	(/sf .00 4.9 1.95 1.7	2.55	4.66.66	(DD) 612.3 (DDS) 38.02	4-	-1.48 1.6 -1.51 .5 -1.52 .3 -1.52 .3 -1.52 .3 -1.52 .1 (OD) 12.3 (DDS) 15.25	S	38	tion (/sf fl .000 1.07 63 .55 1.05 .20	ELF00	se Load al Load
e TX WYE	•	Mpone (KBt	(/sf 0 .00 4.9 7 -1.95 1.7	-19 -2.55 -19 -2.55 -22 -2.626	-36 -2.77 .3 -38 -2.77 .3 -49 -2.81 .2 -60 -2.84 .2	lope(DD) 612.3 urve(DDS) 38.02	4-		asement (/s	1.380 1.510 1.530 t088 t088 t088 ()	ion (/sf fl .00 1.07 63 .55 -1.05 .20	2.18	Base Load Typical Load esidual Load

	Component (KBtu)	(/sf) 1.23 1.68 .61 .47 .30	316.22. -16.249 (/ft)	2.947 .988 .32 .338 .35 .35 .474.1	/sf) 1.64 2.25 2.36 2.49	2.5 2.73 336.4 24.18	(/sf) .64 .43 .28	46.09 1.820
-p es	Delta Co (MBtu)		(DD) (DDS) sement	t -2.04 t -2.30 t -2.48 t -2.48 t -2.47 ercept pe(DD) ve(DDS)	9.0.1 9.0.1 9.0.1 9.0.1 9.0.1	1.4 e(DD) e(DDS)	-value • .00 •04 •07	e(DD) e(DDS) MBtu MBtu MBtu
Cooling Load		RRRRR 61-1-1-1-R -0-1-1-1-1-0-0-1-1-1-1-1-1-1-1-1-1-1-1-	Slope Curve Heated Bas	R-0 R-5 4ft R-5 8ft R-10 4ft R-10 8ft S-00	Craw R-10 #1	Int Int Slo Cur	Window U 1-Pan 2-Pan 3-Pan R-10	Slope Curve 9.23 2.14 1.92
J	omponent (KBtu)	(/sf) 2.69 2.69 1.10 85 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	587.12 -22.544 (/ft)	-2.27 -1.37 -1.13 -1.13 -2.29 1.764 -706.77	t (/sf) .32 1.35 1.66 1.87	2.421 -760.52 68.392	(/sf fir) .24 .15 .08	. 162 . 162 . Load = 1 Load = 1 Load = 1
	Delta Co (MBtu)	0. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	pe(DD) ve(DDS) b	-2.91 -2.76 -2.72 -2.72 -2.58 -2.72 -2.66 -2.72 -2.68	d Basement -2.04 -3.46 r .34	cept B(DD) B(DDS)	ation (2)000 (3)13 (5)24	.001ELF .001ELF Base Typica Residua
,		0	Slop Curv Slab	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter Slope	Unheated R-0 R-11 flr R-19 flr R-30 flr	Slop	Infiltra ELF Ach .0007(.76 .0005(.56	Slope/. Curve/.
	component (KBtu)	(/sf) 36.65 18.02 15.38 12.14 7.58 5.76	7549.53 137.921 (/ft)	116.37 79.87 66.07 70.05 48.54 .000 5152.42		-11. 7175 116.	(/sf) 180.92 85.79 54.56 17.83	7650.43 -30.202
0	Delta Co (MBtu)	.00 -20.90 -23.87 -27.51 -23.63 -32.63	e(DD) e(DDS) - asement	-14.76 -20.76 -23.05 -22.39 -25.96 rcept e(DD) e(DDS)	-34 - 000 -390 - 000 -443 - 36 -445 - 18	9pt 00) 00s) -	.value .000 -17.58 -23.35 -30.14	(DD) (DDS) 8tu 8tu 8tu
ating Loa		Wa N N N N N N N N N	Slop Curv. Heated B	R-6 R-5 8-5 8-1 8-10 10 10 10 00 00 00 00 00 00 00 00 00 0	Craw R-0 R-11 f R-30 f r R-30 f r	Sur	Window U-v: 1-Pane 2-Pane 3-Pane R-10	Slope Curve 205.37 M 73.84 M 8.90 M
Ŧ	Component (KBtu)	38.25 11.529 11.62 8.33 7.36 5.36 7.36 7.36 7.36 7.36 7.36 7.38	7784.54 224.877 (/ft)	57.0 10.5 14.6 14.6 22.7 224.0	t (/sf) 12.54 .69 -2.63 -4.77	6.626	(/sf flr) 26.14 18.58 11.10	36.721 .893 .804 = [coad = 1]
	Delta Co (MBtu)	ing 	• (DD) • (DDS) -	-24.5 -30.4 -31.5 -31.5 -34.1 rcept e(DD)	-14.70 -32.96 -38.07 -41.36	(00) (00)		.001ELF .001ELF Base Typica Residua
		C C C C C C C C C C C C C C C C C C C	Slop yrun del S	2ft 2ft 3 2ft Into Slop Curv	Unheated R-0 R-11 fir R-19 fir R-30 fir	Slop Curve	Infiltra ELF Ach .0007(.96) .0005(.69) .0003(.43)	Slope/.

One Story Prototype Siding

TMY

Buffalo NY

Partial Distance Partial Component Parti										
Delta Component			nponent (KBtu)	<i>(</i>) · · · · · · ·	268.1 13.35 (/ft	4.1-1.11.11.11.11.11.11.11.11.11.11.11.11	2 2 2 2 2 4 2 2 2 3 4 2 4 2 4 2 4 2 4 4 2 4 4 2 4 4 4 4	/sf 1.4 1.9 1.3	165.1 3.33	
Delta Component		-	elta ((MBtu)	Ø 0.0 w w w 4	(DD) (DDS) sement	7 8 7 7 8 8 8 8 (00) (00)	. 6 	value .00 .10	(2)	
Delta Component				32111176	Slop Curv	1-6 1-5 1-16 1-16 1-16 1-16 1-16 1-16 1-		indow U 1-Pan 3-Pan R-1Ø	Slop Curv .77 .24 .14	
Delta Component		Cool	nent (Btu)	# R 0 L R 4 E C C L L	6.30 .217 /ft)	66.82 66.82 66.32 732 732 732	3.655 85 3.655 85 3.655 85	f flr) .20 .15 .09	000 000 000 000 000	
Delta Component (KBtu)	•		(3)		0) 4 0S) -1	-1.13 -1.67 -1.63 -1.65 -1.65 -1.63 -1.63 -1.63	.78 .10 .15 .31 -10		ELF ELF Base Typica	
Delta Component (MBtu) (KBtu)	eries		De 3	- 6 - 11 - 11 - 11 - 12 - 22 - 36 - 38		S	E TTT HOUSE	ltrat Ach (.70) (.50) (.30)	9. /e	
Delta Component	Ξ.					وتودودود	8-7-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	I 300.00.	γO	
Delta Component (ABtu) (KBtu) (KBtu) (KBtu) (KBtu) (KBtu) (KBtu) (MBtu) (KBtu) (MBtu) (MBtu) (KBtu) (MBtu) (MBtu) (KBtu) (MBtu)	. <u>.</u>		mponen (KBtu	5.25 111.12 11.44 11.45	96ø.2 42.68 (/ft	145.6 916.7 14.9 78.6 58.1 6591.8 6591.8	24.0 2.9 2.9 2.9 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	169.6 76.5 48.4 15.4	574.7 -5.6Ø	
Delta Component (MBtu) (KBtu) (MBtu) (KBtu) (MBtu) (KBtu) R-0 R-0 R-10	_		υÇ	. 0.0 ≒ 0.0.4 øø.e.e.r.e.e.		0 × 4 × 5	005-46	0440	_	
Delta Component (MBtu) (KBtu) R-0 R-0 R-0 R-0 R-10 R-10 R-10 R-17 R-17 R-17 R-17 R-17 R-19 R-19 R-19 R-19 R-20 R-20 R-20 R-20 R-20 R-20 R-20 R-20			w		<i>a</i> a a	1 1 1 800	L 0 0	-valu	00 ∑∑∑	
Delta Com (MBtu) Red (MBtu) (MB	₽	ting Loa	w	- 0 - 1 - 11 - 13 - 27 - 34	Slope Curve	-6 4ft - -5 8ft - -10 4ft - -10 8ft - Slope(D		ndow U-valu 1-Pane 2-Pane -13 3-Pane -17 R-10 -22	Slope Curve 01.66 M 34.46 M	
Curve (14) (14) (14) (14) (14) (14) (14) (14)	F ₩	eating Loa	onent De (Btu) (/sf) Wall 6.63 R-0 1.72 R-1 8.20 R-11 8.20 R-13 6.93 R-19 5.24 R-27 8.32 R-34	64.10 Slope 3.141 Curve (/ft) Heated Ba	24.92 R-6 4ft - 14.42 R-5 8ft - 18.42 R-10 4ft - 3.67 R-10 8ft - 3.67 R-10 8ft - 6.63 Intercent S3.89 Slope(Dec.507)	(/st) Craw! 9.71 R-0 2.34 R-11 flr17 R-19 flr 1.79 R-38 flr	sf flr) Window U-valu 24.62 1-Pane 17.21 2-Pane -13 10.10 3-Pane -17 R-10 -22	2.541 Slope 3.750 Curve Load = 101.66 M Load = 34.46 M Load = .98 M	
	T P!W YMT	eating Loa	omponent De (KBtu)	.00 40.17 R-0 14.72 15.63 R-7 17.07 11.72 R-11 19.18 8.20 R-13 19.94 6.93 R-19 20.96 5.24 R-27 21.57 4.22 R-34 22.10 3.32	5) -133.141 Slope (/ft) Heated Ba	96 62.17 R-0 45 24.92 R-5 4ft - 87 14.42 R-5 8ft - 71 18.42 R-10 4ft - 30 3.67 R-10 8ft - -26.623 Interce 9453.89 Slope(D	62 9.71 R-0 64 2.34 R-11 flr 6517 R-19 flr 52 -1.79 R-38 flr R-38 flr R-49 flr 6180.86 Slope -597.118 Curve	ion (/sf flr) Window U-valu. .00 24.62 1-Pane -8.89 17.21 2-Pane -13 -17.42 10.10 3-Pane -17	32.541 Slope 3.750 Curve lase Load = 101.66 M cal Load = 34.46 M lual Load = .98 M	

Series Two
Siding
«Apartment Prototype
MApar
TMY
Buffalo NY

70
ø
c
a
č
.=
4
-
9
-

Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 (92 R-715 .45 R-1117 .38 R-1320 .29 R-1922 .24 R-2723 .18 R-3425 .14	Slope(DD) 178.54 Curve(DDS) -1.502 Heated Basement (/ft)	R-063 .93 R-5 4ft6757 R-5 8ft6790 R-10 4ft6790 R-10 8ft6757 Intercept .000 Slope(DD) -82.18 Curve(DDS) 2.643	Crawl (/sf)	.000 .34 .34 .441 .49 .600 .31 .31	Window U-value (/sf 1-Pane .00 -2.7 2-Pane .07 -2.2 3-Pane .19 -1.4 R-10 .325	Slope(DD) -260.24 Curve(DDS) 5.887 5.82 MBtu 3.70 MBtu 1.98 MBtu
J	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 2.34 R-787 .89 R-11 -1.01 .66 R-19 -1.14 .45 R-22 -1.17 .39 R-38 -1.23 .30 R-49 -1.36 .18 R-60 -1.32 .14	Slope(DD) 416.08 Curve(DDS) -3.494 Slab (/ft)	R-0 R-5 2ft74 -2.90 R-5 4ft72 -2.07 R-10 2ft74 -2.57 R-10 4ft69 -1.07 Intercept 2.477 Slope(DD) -1246.66 Curve(DDS) 56.469	Unheated Basement (/sf)	R-11 flr63 .05 R-11 flr17 .80 R-19 flr01 1.08 R-30 flr .10 1.26 Intercept 1.767 Slope(DD) -694.92	(/sf 000 05	Slope/.001ELF229 Curve/.001ELF .365 Base Load = Typical Load = Residual Load =
Heating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 36.54 R-7 -6.12 17.22 R-11 -6.99 14.47 R-13 -7.99 11.32 R-19 -8.49 9.75 R-27 -9.36 7.00 R-34 -9.90 5.31	Slope(DD) 6840.95 Curve(DDS) -8.977 Heated Basement (/ft)	R-0 R-5 4ft -12.25 103.30 R-5 8ft -12.83 84.14 R-10 4ft -12.71 88.14 R-10 8ft -13.54 60.47 Intercept .000 Slope(DD) 6183.67 Curve(DDS) -48.985	Crawl (/sf)	R-0 R-11 flr -12.91 4.07 R-19 flr -15.03 .54 R-30 flr -16.37 -1.69 R-38 flr -16.37 -1.69 R-49 flr -17.55 -3.66 Intercept -6.956 Slope(DD) .79.649	Window U-value (/sf 1-Pane .00 169.0 2-Pane -13.54 75.0 3-Pane -17.51 47.4 R-10 -22.19 14.9	Slope(DD) 6356.96 Curve(DDS) 1.722 : 96.20 MBtu : 31.93 MBtu
Í	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 39.22 R-7 -14 43 15.17 R-11 -16.73 11.34 R-19 -18.80 7.89 R-22 -19.52 5.03 R-38 -21.11 4.04 R-49 -21.62 3.19 R-60 -21.94 2.65	Slope(DD) 7249.66 Curve(DDS) -107.013 Slab (/ft)	R-Ø -13.03 77.30 R-5 2ft -14.20 38.47 R-5 4ft -14.55 26.97 R-10 2ft -14.41 31.47 R-10 4ft -14.89 15.64 Intercept -17.417 Slope(DD) 10370.65 Curve(DDS) -175.171	Unheated Basement (/sf)	R-Ø -10.29 8.44 R-11 flr -13.84 2.52 R-19 flr -15.16 .32 R-30 flr -16.00 -1.08 Intercept -5.041 Slope(DD) 5463.17 Curve(DDS) -552.698	(/sf .00 24 .88 17 .40 10	Slope/.001ELF 32.437 Curve/.001ELF 3.802 Base Load = Typical Load = Residual Load =

(KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB)	(/sf) 03 .24 .17	38.23 -1.486
(MBtu) (M		(DD) (DDS) Btu Btu Btu
Ing Loan Name Nam	Window U-, 1-Pane 2-Pane 3-Pane R-10	Slope Curve 9.09 MB 1.54 MB -2.09 MB
(KBtu) 3.255 3.255 3.256 1.333 1.335 1.335 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.6	(/sf flr) .19 .14 .09	.325 081 081
Two (MBtu) and (MBtu)		01ELF 01ELF Bas Typica Residua
oeries RR-0-11 RR-130 RR-130 RR-130 RR-130 RR-130 RR-11 RR-130 RR-130 RR-130 RR-130 RR-10 RR-1	Infiltrat ELF Ach .0007(.56) .0005(.40) .0003(.24)	Slope/.001E Curve/.001E
6		
1. / 204844. 1. / 20484. 1. / 20484. 1. / 20484. 1. / 20484. 1. / 20484. 2048. 2048. 2048. 20484. 20	(/sf) 192.28 94.01 59.94 19.88	
Proto- MBta C C C C C C C C C C C C C C C C C C C	.00 -18.16 -24.46 -31.86	(DDS) 8 (DDS) - Btu Btu Btu
Story W W W W W W W W W W W W W W W W W W W	ndow U-i 1-Pane 2-Pane 3-Pane R-10	Slope Curve 6.81 M 7.06 M 1.20 M
2 C C C C C C C C C C C C C C C C C C C	. <u>-</u> ≽	21 = 7
TMY (KBtu) (St) (St) (St) (St) (St) (St) (St) (St	(/sf flr) 24.90 17.67 10.53	34.773 1.136 se Load 11 Load
VT 13.6 % Sec. 1. 13.	Eion .000 -11.13	01ELF 01ELF Bas Typica Residua
0	Infiltra ELF Ach 6007(.81) 6005(.58) 6003(.35)	Slope/.0011 Curve/.0011

		Component (KBtu)	(/sf) 1.32 75 .75 .67 .67 .84 .34	354.11 -20.345 (/ft)	97 -1.72 -1.72 -1.72 -1.22 -1.22 -1.39,88	(/sf)	± 4.	(/sf (/sf -3.0 -2.1 -1.3	233.21 4.495
	ֿֿסַ	Delta Co (MBtu)		e (DD) e (DDS) asement	78 73 73 73 73 71 (00) (00)		fir .38 fir .41 fir .45 fir .45 fir .47 fir .50		ve(DD) - ve(DDS) - MBtu MBtu MBtu
	Cooling Loa		X X X X X X X X X X X X X X X X X X X	Slope Curve Heated Bas	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Slope Curve	Crawl	R-0 R-11 flr R-19 flr R-38 flr R-49 flr Inter	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 6.31 MI 3.61 MI 1.92 ME
	ŭ	Component (KBtu)	(/sf) 3.02 1.17 1.17 88 .62 .50 .36 .27	552.88 -7.467 (/ft)	-8.72 -6.72 -6.22 -6.72 -5.22 -2.508 -932.79	t (/sf)	7.06 1.10 1.42 1.62 1.62 2.159 -732.58	. t + 1.00.	. 167 . 000 . 0000 . Load
		Delta Co (MBtu)	00.00 00	(DD) (DDS)	-1.01 -93 -93 -91 -93 -93 -93 -93 -93 -93 -93 -93 -93 -93	Basement	76 .19 .19 .31	00 1 80 1	.001ELF .001ELF Base Typical Residual
,			Ce RR-1011 RR-	S S S S S S S S S S S S S S S S S S S	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Interc Slope Curve	Unheated	R-0 R-11 flr R-19 flr R-30 flr Interce Slope(C	Infiltra ELF Ach .00007(.56) .00005(.40) .0003(.24)	Slope/.i
		omponent (KBtu)	(/sf) 39.80 19.11 16.17 12.67 7.87 5.99	7763.74 -67.729 (/ft)	163.57 101.32 82.57 86.32 59.32 .000 .000	(/sf)	25.05 3.15 63 -3.02 -3.56 -5.14 -8.761 160.929	27 (7095.28 -14.767
	ק	Delta Co (MBtu)		e (DD) e (DDS) asement	-8.49 -10.98 -11.73 -11.58 -12.66 -12.66 -12.66 -10.00 -10.00		.000 -13.14 -15.41 -16.84 -17.17 -18.11 (DD)	U-value nne .000 nne -13.77 nne -18.06	(DD) (e(DDS) MBtu MBtu
	Heating Load		Wa - R - R - R - R - R - R - I - I - I - I	Slope Curve Heated Ba	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Inter S-0pe Curve	Crawi	R-6 R-11 R-13 f-r R-38 f-r R-9 f-r R-9 f-r C-rope	Window U 1-Pan 2-Pan 3-Pan R-10	Slope Curve 105.13 h 34.43 h 2.67 h
	Ŧ	mponent (KBtu)	(/sf) 44.30 17.33 13.03 9.16 7.75 5.86 4.71 3.72	8475.64 169.359 (/ft)	71.5 28.5 16.5 20.8 20.8 28.24 904.2	t (/sf)	16.96 2.64 -18 -2.00 -7.032 6927.09	(/sf flr) 23.19 16.15 9.44	30.208 4.167 6 Load = Load =
		Delta Co (MBtu)	. ng . 00 . 00 . 18 . 18 . 18 . 18 . 18 . 12 . 23 . 08 . 23 . 08 23 . 75 24 . 35	(00) e (00)	-12.17 -13.89 -14.37 -14.20 -14.85 -14.85 -10.00	Ваѕешел	-8.49 -13.45 -15.14 -16.23 -16.23 -16.00 -(DD) -(DD)	ation (h .000 3) .000 9) -8.45 6) -16.50	001ELF 001ELF Bas Typica Residua
			C C C C C C C C C C C C C C C C C C C	Slop Curv Slab	2 2 4 5 2 6 4 6 10 2 6 4 6 10 4 6 6 10 C C C C C C C C C C C C C C C C C C	Unheated	R-8 R-13 R-13 R-13 R-13 S-15 C-15 C-15	Infiltra ELF Acl .0007(.8: .0005(.5:	Slope/.Curve/.6

Mid Town Prototype Siding

TMY

Burlington VT

		omponent (KBtu)	() sf 1.563 .586. .32 .32 .25	254.02 -11.500 (/ft)	.63 20 53 53 37 900 -49.75	(/sf)	1.56 1.56 1.67 1.88 1.92 2.26 496.78	-3.61 -2.64 -1.73 66	294.85 5.986	
		elta ((MBtu)		(DD) (DDS) - sement	54 57 56 56 56 (00) (00)		. 98 . 38 . 45 . 57 . 57 . 68 . 68 . 68 . 68 . 68 . 68	. 60 . 14 . 27	(DD) - (DDS) - Btu	3tu 3tu
	ng Load	<u>.</u>	**************************************	Slope Curve		- we	11 flr 19 flr 30 flr 49 flr Intercept Slope(DD)	indow U-1 1-Pane 2-Pane 3-Pane ,R-10	Slope Curve	2.99 MB 1.63 MB
	Cooling			£	¢ ¢ ¢ ¢ ¢	Ç	\$\pi\$ \pi\$ \pi\$ \pi\$	1r.) Wi 9 3 2	u	11 U
		Component (KBtu)	(/sf) 3.20 3.20 1.31 1.01 1.01 1.03 1.03 1.03 1.03 1.0	697.72 -26.648 (/ft)	-3.70 -2.03 -2.03 -1.53 -1.53 6.486 1972.86	t (/st)	.03 .77 1.02 1.19 1.654 -639.46	(/sf flr 09 13	60 .67	~ ~
Ow L		elta Cor (MBtu)		· (\$00)	66 67 57 67 68 53 53 (DD)	Basement	54 18 .06 .06 .16 (00) .005)		ELF ELF Ba	Typica Residua
Series		ă ¯	Ceil R-6 R-11 R-11 R-22 R-38 R-38 R-49	Slope Curve	2ft 4ft 8 2ft 3 4ft Inter Slope Curve	Unheated 6	11 flr	Infiltrat ELF Ach 0007(.56) 0005(.40) 0003(.24)	lope/.0016 urve/.0016	
6					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ร		<u>н</u> <u> </u>	νū	
Sid		Component (KBtu)	(/sf) 40.14 18.94 15.93 12.43 10.70 7.70 5.85	527.35 12.101 (/ft)	191.47 116.31 94.64 98.81 67.64 .000 748.76	(/sf)	26.84 4.51 -1.75 -2.30 -3.90 -7.557 500.72	(/sf) 177.02 80.00 50.66 16.15	881.48 -6.679	
Prototype		elta Com (MBtu)	.00 -6.72 -7.68 -8.78 -9.33 -10.87	(DD) 7 (DDS) -	-10.36 -12.62 -13.27 -13.14 -14.08 (CDD) 6		.00 -13.40 -15.69 -17.15 -17.48 -18.44 (DD) 7 (DD) 7	. 00 -13.97 -18.20 -23.16	(DD) 6 (DDS) 6 (DDS)	Btu Btu
MApartment	beog 60	۵	¥a - 1 R - 0 R - 1 R - 13 R - 19 R - 27 R - 34	Slope Curve	4ft 8ft 8 4ft Inter Curve	- we	0 #	Window U-va 1-Pane 2-Pane 3-Pane R-10	Slope Curve	31.73 MI 2.94 MI
MAp	eating			Ĭ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Ü	жжжж 111111	(; .:.w		н н
TMY	Ï	omponent (KBtu)	(,sf) 16.13 18.13 18.77 19.57 19.57 19.55	1892.48 38.017 (/ft)	91.14 45.97 32.64 37.81 19.31 18.65 666.81	; (/sf)	9.57 2.95 .48 -1.11 -5.574 526.709	22.99 15.95 9.28	29.526 4.746	
-		()	55.22 50.34 50.52 50.52 50.52 60.60 60) 8 S) -1	3.37 4.73 4.97 4.97 5.53 (t	ement	6.36 6.77 6.77 6.77 6.77 6.77	n 88.08 6.45 4.45	α	ypic sidu
on VT		Delt: (MB)	11111111	00)	-13 t -14 t -15 t -14 t -15 ercept ve (DD)	d Bas	-16 -14 -15 -15 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	ratio ch 81) 59) - 36)-1	.001E .001E	₩ •
Burlington			Ce R - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	Slop Curv Slab	24 24 0 24 1 1 1 t 5 0 0	eate	1 fl 9 fl 8 fl Int Slo Cur	Infiltr ELF Ac 0007(.8 0005(.8	ope/ rve/	
Bur					R R R R R R R R R R R R R R R R R R R	Unh		н П 9 9 9 9	S	

	omponent (KBtu)	(\$s') 0.86 1.14 1.14 1.18	381.44 63.990 (/ft)	56666644	(/sf)	59 	(/sf) -7.28 -6.47 -4.28	770.65 18.742
þe	Delta Co (MBtu)		oe(DD) ve(DDS) Sasement	-2.70 -2.89 -2.85 -2.94 -2.96 rcept e(DD) e(DDS)		.000 .92 .92 .94 .94 .95 .97 .97 .90(DD)	-value 	• (DD) - • (DDS) - MBtu MBtu
Cooling Load		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Slope Curve Heated Bas	R-6 R-5 R-5 84 R-10 84 Inter S-10 Cury	Crawi	R-0 R-11 f-r R-19 f-r R-38 f-r R-38 f-r R-49 f-r R-50 f-r R-6 Interc Slope Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 42.15 h 27.51 h 9.38 h
ŭ	omponent (KBtu)	(/sf) 8.49 3.05 2.18 1.40 1.17 1.17 67 .67	1219.54 35.707 (/ft)	-42.54 -42.18 -41.51 -42.06 -41.21 -39.154 -756.41	t (/sf)	-2.34 -1.89 80 61 131 -642.35	(/sf flr) 3.64 2.63 1.60	5.422 325
	Delta Co (MBtu)	-ing -8.37 -9.71 9 -10.91 2 -11.27 -12.02 9 -12.22	((DD) (((((((((((((((((-6.16 -6.18 -5.99 -6.08 -6.08 -5.94 -6.00)	Ваѕешеп	-2.78 77 33 84 84 (00) (00)	ration (ch 53) .00 39) -1.55 23) -3.14	001ELF 001ELF Bas Typica Residua
,		0	Slope Curve	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Intel Slope	Unheated	R-11 flr R-19 flr R-30 flr Intere Slope	Infiltr ELF Ac. .0007(.5 .0005(.3	Slope/
	Component (KBtu)	(/sf) 12.25 5.71 4.78 3.64 3.08 1.75	2195.23 15.391 (/ft)	52.82 35.23 36.23 31.01 24.81 16.943 414.18	(/sf)	10.29 3.10 2.00 1.43 1.30 .000 766.58	(/sf) 45.91 15.99 9.85 2.62	054.92 25.920
סר	Delta Cor (MBtu)	.00 -7.35 -8.40 -9.67 -10.30 -11.82	e(DD) e(DDS) asement	-7.08 -10.00 -10.81 -10.70 -11.73 rcept e(DD) 1		.008 -11.08 -12.77 -13.64 -13.84 -14.41 copt e(DD) 1	-value .000 -5.53 -6.67	(DD) 1 (DDS) 1 Btu Btu Btu
ating Loa		Wall R-0 R-13 R-13 R-13 R-34 R-34	Slop Curv Heated B	R-6 R-5 R-5 R-10 R-10 R-10 S-10 S-10 Cury	Crawl	R-6 R-11 flr R-19 flr R-30 flr R-49 flr Inter Slope Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 63.26 M 22.94 M 18 M
₩ ₩	omponent (KBtu)	(/sf) 14.45 5.69 4.29 3.04 1.95 1.54 1.64	2809.71 -62.746 (/ft)	34.2 22.1 19.3 20.1 16.6 10.1 14.1 891.6	: (/sf)	5.6 2.56 1.86 1.36 7.76.59	(/sf flr) 5.79 3.67 1.93	5.032 4.627 4.627 Coad III
	Deita Cor (MBtu)	ing -13.65 -17.65 -17.58 -18.31 -19.39 -28.36	(00) (008)	-10.16 -12.17 -12.64 -12.50 -13.09 rcept e(DD) 1	Basement	-7.08 -11.88 -13.08 -13.85 -13.85 e(DD) 1	ation (h h	Ø1ELF Ø1ELF Bas Typica Residua
		0	Slop Curv	R-6 R-5 2ft R-10 2ft R-10 2ft S-10 4ft	Unheated	R-0 R-11 R-13 R-19 F-7 T-1 S-0 S-0 C-1	Infiltra ELF Act .0007(.77 .0005(.53	Slope/.0 Curve/.0

One Story Prototype Siding

WYEC

Charleston SC

Cooling Load	Component J) (KBtu)	(/sf) Wali (/sf) .00 7.80 R-0 .00 3.03 .09 2.64 R-793 1.08 .59 1.82 R-11 -1.06 .80 .03 1.08 R-13 -1.17 .58 .13 .92 R-19 -1.22 .47 .71 R-27 -1.29 .33 .33 .58 R-34 -1.33 .24 .49 .31	913.36 Slope(DD) 254.05) 67.726 Curve(DDS) 57.458 (/ft) Heated Basement (/ft)	.22 -75.26 R-078 -3 -3 -13 -74.51 R-5 4ft79 -3 -3 -13 -73.01 R-5 8ft78 -3 -3 -18 -72.76 R-10 8ft81 -4 -59.110 Intercept -36 -1304.48 Slope(DD) -22 67.956 Curve(DDS) 4	ment (/sf) Crawl (/sf)	.78 -2.62 R-0 .00 -1.32 .02 -1.35 R-11 flr .6228 .2198 R-19 flr .6720 .3573 R-30 flr .7212 R-38 flr .7212 R-49 flr .7605 078 Intercept .000 -894.86 Slope(DD) -136.58 77.946 Curve(DDS) -23.441	(/sf flr) Window U-value (/sf) 00 2.94 1-Pane .00 -14.41 02 2.09 2-Pane .36 -11.91 03 1.25 3-Pane .94 -7.85 R-10 1.63 -3.09	# 1.125 Slope(DD) -1387.35 .104 Curve(DDS) 31.881 Base Load = 28.06 MBtu ical Load = 22.57 MBtu dual Load = 11.94 MBtu
Siding Series Two	Delta (MBt	Sf) Ceiling .48 .81 .86 .87 .88 .89 .73 .73 .73 .73 .74 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75	.34 Slope(DD) 731 Curve(DDS) ft) Slab	.90 R-6 -2. .65 R-5 2ft -2. .90 R-10 2ft -2. .90 R-10 2ft -2. .65 R-10 4ft -2. .65 R-10 4ft -2. .65 Slope(DD) .65 Slope(DD)	sf) Unheated Basem	81 R-0 43 R-11 flr - 54 R-19 flr 10 R-30 flr 99 Intercept 84 Slope(DD) 91 Curve(DDS)	f) Infiltration ELF Ach 85 .0007(.53) . 25 .0005(.39) -1. 12 .0003(.24) -2.	69 Slope/.001ELF 28 Curve/.001ELF Typ
Mid Town Prototype	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 R-13 R-13 R-13 R-27 R-53 R-27 R-65 R-34 R-65 R-13 R-34 R-65 R-13	Slope(DD) 1582. Curve(DDS) 102.7 Heated Basement (/f	R-6 R-5 4ft -4.30 24. R-5 8ft -4.46 20. R-10 4ft -4.45 20. R-10 8ft -4.62 16. Intercept 8.4 Slope(DD) 715. Curve(DDS) 5.4	Crawl (/s	R-0 R-11 flr -3.83 2. R-19 flr -4.36 1. R-36 flr -4.63 1. R-38 flr -4.63 1. R-49 flr -4.87 . Intercept .0 Slope(DD) 1315. Curve(DDS) 78.4	Window U-value (/s 1-Pane .00 39. 2-Pane -3.83 13. 3-Pane -4.57 8. R-10 -5.44 2.	Slope(DD) 819. Curve(DDS) 26.1 28.75 MBtu 11.51 MBtu 2.89 MBtu
Charleston SC WYEC He	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-0 R-7 -5.67 R-11 -6.58 3.99 R-19 -7.39 2.64 R-22 -7.65 2.21 R-38 -8.20 1.29 R-49 -8.35 1.65 R-60 -8.44	Slope(DD) 2342.91 Curve(DDS) 30.303 Slab (/ft)	R-0 R-5 2ft -4.79 12.40 R-5 4ft -4.87 10.40 R-10 2ft -4.84 11.15 R-10 4ft -4.93 8.90 Intercept 6.010 Slope(DD) 606.02 Curve(DDS) 85.990	Unheated Basement (/sf)	R-0 R-11 fir -4.49 1.33 R-19 fir -4.75 .89 R-30 fir -4.92 .61 Intercept135 Slope(DD) 1008.29 Curve(DDS) -77.650	Infiltration (/sf flr) ELF Ach .0007(.74) .00 4.35 .0005(.53) -2.39 2.35 .0003(.32) -4.06 .96	Slope/.001ELF .958 Curve/.001ELF 7.500 Base Load = Typical Load = Residual Load =

Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 2.48 R-761 .56 R-1169 .29 R-1374 .14 R-1976 .07 R-2778 .03 R-3478 .00	Slope(DD) -83.82 Curve(DDS) 1Ø1.357 Heated Basement (/ft)	R-Ø60 -46.54 R-5 4ft59 -46.04 R-16 4ft60 -46.54 R-10 8ft59 -46.21 Intercept -46.593 Slope(DD) 41.13 Curve(DDS) -1.014	Crawl (/sf)	R-0 .00 -1.32 R-11 flr .7605 R-19 flr .7900 R-30 flr .80 .02 R-49 flr .80 .02 R-49 flr .81 .04 Intercept .04 Slope(DD) .75.03 Curve(DDS) -64.782) Window U-value (/sf) 1-Pane .00 -13.87 2-Pane .35 -11.44 3-Pane .91 -7.54 R-10 1.57 -2.96	Slope(DD) -1331.57 Curve(DDS) 30.544 = 25.65 MBtu = 21.06 MBtu = 10.78 MBtu
	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 7.100 R-7 .2.79 2.45 R-11 .3.23 1.71 R-19 .3.64 1.04 R-22 .3.74 .87 R-38 .3.95 .55 R-49 .4.02 .40 R-60 .4.06 .33	Slope(DD) 882.25 Curve(DDS) 53.184 Slab (/ft)	R-Ø -1.61 -80.04 R-5 2ft -1.58 -79.04 R-5 4ft -1.58 -79.88 R-10 2ft -1.60 -79.71 R-10 4ft -1.55 -78.04 Intercept -75.592 Slope(DD) -970.47 Curve(DDS) 51.829	Unheated Basement (/sf)	R-060 -2.33 R-11 flr .13 -1.11 R-19 flr .2885 R-30 flr .3869 Intercept263 Slope(DD) -560.76 Curve(DDS) 30.871	Infiltration (/sf flr ELF Ach .0007(.53) .00 2.72 .0005(.39) -1.01 1.88 .0003(.23) -1.97 1.09	Slope/.001ELF 3.417 Curve/.001ELF .677 Base Load : Typical Load : Residual Load :
ating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 11.26 R-7 -2.13 4.55 R-11 -2.43 3.60 R-13 -2.73 2.65 R-19 -2.88 2.18 R-27 -3.07 1.57 R-34 -3.19 1.20	Slope(DD) 1399.24 Curve(DDS) 129.276 Heated Basement (/ft)	R-Ø -4.16 45.74 R-5 4ft -4.89 21.41 R-5 8ft -5.00 17.57 R-10 4ft -4.99 17.91 R-10 8ft -5.14 12.91 Intercept 4.949 Slope(DD) 670.13 Curve(DDS) 9.492	Crawl (/sf)	R-0 R-11 flr -4.13 2.34 R-19 flr -4.68 1.41 R-3Ø flr -4.91 1.03 R-3Ø flr -4.97 .94 R-49 flr -5.12 .68 Intercept .000 Slope(DD) 1182.85 Curve(DDS) 119.695	Window U-value (/sf) 1-Pane .00 39.09 2-Pane -3.88 12.18 3-Pane -4.56 7.39 R-10 -5.38 1.76	Slope(DD) 678.32 Curve(DDS) 30.392 26.98 MBtu 10.66 MBtu 3.22 MBtu
Неа	Delta Component. (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 R-1 R-11 R-56 R-13 R-12 R-22 R-38 R-38 R-38 R-38 R-38 R-38 R-38 R-38	Slope(DD) 2098.79 Curve(DDS) 64.225 Slab (/ft)	R-0 -4.81 24.07 R-5 2ft -5.15 12.74 R-5 4ft -5.20 10.91 R-10 2ft -5.18 11.57 R-10 4ft -5.25 9.41 Intercept 7.347 Slope(DD) 253.31 Curve(DDS) 119.272	Unheated Basement (/sf)	R-0 R-11 flr -4.94 .97 . R-19 flr -5.15 .62 R-30 flr -5.29 .40 Intercept204 Slope(DD) 812.27 Curve(DDS) -63.658	Infiltration (/sf flr) ELF Ach .0007(.74) .00 4.19 .0005(.53) -2.38 2.21 .0003(.32) -4.00 .85	Slope/.001ELF .479 Curve/.001ELF 7.865 Base Load = Typical Load = Residual Load ≈

MApartment Prototype Siding

WYEC

Charleston SC

																			1															
		omponent (KBtu)		/st	1		4	ε.	.26	Ņ.		258.34	14.	-	.33	4.		ن س		70	(/sf)	1 11	1.44	1.46	1.48	_	-16.16 18 808	; ;		1.37	.50	-	78.54 940	
	ooling Load	Delta ((MBtu)		- 62	-1	-111	-13	-19 -1.	R-27 -1.16	· T = +0-		Slope(DD) Curve(DDS)	Heated Basement		-1.7	-5 4ft -1.8	-3 67 C -1	-10 8ft -1.8	Intercept Slope(DD)		Crawl	6-	-11 fir .4	R-19 flr . 45 R-30 flr . 47	-38 fir .4	-49 fir Intercent	(66)			-Pane .0	2-Pane11 3-Pane16	-102	Slope(DD) Curve(DDS)	9.30 MBtu 1.40 MBtu -1.81 MBtu
es Two	ů	Delta Component (MBtu) (KBtu)	3-//	.80	-3.26 1.3	1 -3.78 .9	9 -4.25 .6	4.41 .5	8 -4.76 34	9 -4.86 .2	9 -4.93 .2	600) 606.82 (600S) -4.882	(/ft)	;	-2.35 -3.2	-2.10 -2.2	-2.15 -2.0	-2.05 -1.4	G(DD)	•(DDS) 16.26	Basement (/sf)	9. 22.	7. 27	42 .90		apt 1.35	0) -459 00S) 39.	ation (/sf flr)	;	88.	5)15 .06		001ELF .162 001ELF .081	Base Load = Typical Load = Residual Load =
Siding Seri		nent Btu)	/sf) (9.93	9.55 R-7	5.65 R-1	3.11 R-1	1.33 K-2	23 8-3	4	φ	9.91 Slop.	/ft) Slab	(7 - 6 - 7 - 6 - 7 - 6	.63 R-5 4f	.21 R-1	.84 R-10 4f	0000 Int	טֿמ	sf) Unheated	.37 R-Ø	R-11 #1	e œ	. 68		Slop	sf) Infiltr	ELF A	71 0001(. 71 000E(.54 .0003 (.25)	70.	.54 Slope/.6 196 Curve/.6	
ne Story Prototype	ting Load	Delta Compone (MBtu) (KBt	e	٦,	-/ -22.90	-11 -26.16	-10 -30.14	-27 -35.68	-34 -37.8			Slope(DD) 812 Curve(DDS) -131	eated Basement (6	-13.5/ 12 ft -20.01 8	8ft -22.56 7	3 4ft -21.80 7	9 8ft -25.68 5	Cept (DD) 592	urve(UUS) -69	/) me_	2 88.	1 fir -35.06 9 fir -40 07	-30 flr -44.60 -6.59	9 fir -47.82	Intercept	ope(UD) 7 rve(DDS) -1	indow U-value (/	Q. 000	-Pane -19.64 9	-25	1 00:30	Slope(DD) 7915 Curve(DDS) -17.	05.76 MBtu 66.85 MBtu 10.64 MBtu
enne WY WYEC Or	Неа		//sf	.00 41.6	-30.40 IO.0	12. 12. 12. 1	2 -52.26 7.7	3 -55.13 5.8	92- 6	1 - 58.42 3.7	9.5	ope(DD) 8537.23 Irve(DDS) -254.593	ab (/ft) H	31 67 11 0	t -29.78 28.14 R	t -31.72 16.45 R	t -31.68 28.79 R	C -33.08 4.64 K	pe(DD) 11734	643.343 (200)2.	ted Basement (/sf) C	-13.57 13.56 R	8.47 -2.61 R	r -42.00 -4.90 R	< 0<	tercept -11.081	rve(DDS) -702	ration (/sf flr) W	0.69 23.0	-10.29 16	-20.47 9.7		7.001ELF 32.338 7.001ELF .893	Base Load = 2 Typical Load = Residual Load =
Cheye			ŭ,	żο	ć oʻ	e de	à	æ	o'e o		•	S S	S	R-6	R-5 2	<u>ئ</u>	-16	a	SIN	,	nhea	9:	1 1	-30		Ë		Infilt				į	Slope/ Curve/	

	component (KBtu)	(/sf) 1.47 1.79 . 79 . 69 . 53 . 34	349.19 .14.056 (/ft)	-1.15 -1.65 -1.65 -1.65 -1.15 -1.15 -1.500 145.21 2.994	(/sf)	111111 0.4444 7.1477	5.6 33	.35 .28 .18	32.36 724	
	elta ((MBtu)	0.1.1.1.0 0.2.2.3.3.2 0.2.4.3.1.2 0.2.4.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	(DD) (DDS) - sement	63 65 65 65 65 65 (00) (DD)		. 28 . 28 . 38 . 38 . 31	ercept (e(DD) (e(DDS) -	a Lue 	(800) (00)	Btu Btu Btu
Cooling Load	۵	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Slope Curve Heated Bas	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Inter Slope	Crawl		Intero Slope Curve(Window U-v 1-Pane 2-Pane 3-Pane R-10	Slope Curve	6.38 MB 3.21 MB 1.26 MB
Ů	omponent (KBtu)	(/sf) 3.73 1.51 1.15 1.15 .83 .83 .53 .43	780.91 -25.545 (/ft)	-9.15 -7.40 -6.40 -6.90 -5.40 -1.714 -1.714 63.689	(/sf)	Ø	1.279 486.64 43.330	(/sf flr) .12 .08 .05	.167	E Load
	Deita Cor (MBtu)		(saa)	95 88 84 86 86 (00) -100S)	Basement	1 1 1 1	(00) (00) (008)		IØ1ELF IØ1ELF	Bas Typica Residua
	٠	C	Slope Curve Slab	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter S-00e	Unheated	R-0 R-11 flr R-19 flr R-30 flr	Interce Slope(C Curve(C	Infiltrat ELF Ach .0007(.59) .0005(.42) .0003(.25)	Slope/.06 Curve/.06	
	Component (KBtu)	(/sf) 38.18 17.85 11.95 11.60 9.94 7.17 5.47	6980.25 22.190 (/ft)	142.21 85.21 68.71 72.21 49.46 .000 5300.72	(/sf)	0 11110	-6.31 317.7 27.81	(/sf) 168.95 68.54 42.94 12.84	368.81 39.053	
סד	Delta Co (MBtu)	. 00 - 9.69 - 11.07 - 12.67 - 13.48 - 14.78 - 15.59	(DD) (DDS) sement	-8.32 -10.66 -11.26 -11.12 -12.03 -12.00 (DD)		.00 -12.71 -14.80 -16.01 -16.29 -17.09	(00) (00) (00)	. 00 -14.46 -18.15 -22.48	(00) (008)	8tu 8tu 8tu
eating Load		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Slope Curve Heated Ba	R-6 R-5 R-5 R-5 R-10 4ft R-10 8ft Inter Slope Curve	Crawl		Slope	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope	97.55 M 27.85 M 7.27 M
Ŧ	mponent (KBtu)	(/sf) 43.46 16.81 12.55 8.73 7.73 7.73 5.56 4.46 3.53	8Ø21.12 116.428 (/ft)	60.96 22.21 11.96 15.71 2.46 -23.512 8410.09	t (/sf)	4.6.12	-2.823 6270.04 602.460	(/sf flr) 20.07 13.58 7.70	23.416 7.501	
	Deita Co (MBtu)	- 15 . 99	(DD) (DDS)	-11.57 -13.12 -13.53 -13.38 -13.91 -13.91 copt e(DD)	Basemen	111 9	(DDS) -6	tion .000 .7.78 .14.84	001ELF 001ELF	Bas Typica Residua
	_	C. B. R.	Slope Curve	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter Slope Curve	Unheated		SCOP	Infiltra ELF Ach .0007(*** .0005(.71 .0003(.44	Slope/.0 Curve/.0	

Mid Town Prototype Siding

WYEC

Cheyenne WY

Delta Component (MBtu) (KBtu)	(/sf) 1.35 1.35 1.28 .71 1.30 .47 1.35 .24	00 (00) 311.59 (00) -11.316 (1)	45 -1.36 46 -1.52 46 -1.19 44 -1.62 44 -1.02 orcept .000	(/sf)	.00 .69 .20 1.02 .21 1.04 .21 1.05 .21 1.05 .21 1.05 .22 1.05 .20 1.05 .20 1.05 .20 1.32 .20 1.32	-value (/sf) e .00 .78 e05 .40 e08 .26 10 .09	e(DD) 37.40 e(DDS)296 MBtu MBtu MBtu
	**************************************	Slop Curv Heated E	R-6 R-5 4ft R-5 8ft . R-10 4ft R-10 8ft Inte	Crawl	R-0 R-10 R-10 F-10 R-30 F-1 P-30 F-1 C-1 C-1 C-1	Window 1-Pa 3-Pa R-10	Slop Curv 5.31 2.44 4.46
omponent (KBtu)	(/sf) 3.82 3.82 1.156 1.19 1.19 1.19 1.47 1.47 2.29	825.13 -30.492 (/ft)	7 - 5.36 3 - 4.62 2 - 3.69 9 - 2.69 9 - 2.69 - 859.63 36.148	nt (/sf)		.17 .13 .13 .08	. 313 104 se Load =
Delta C (MBtu)	00 00 00 00 00 00 00 00 00 00 00 00 00	ve (DD)		d Baseme	4-00	ation h 9) .0 2)0 5)1	.001ELF .001ELF Base Typica Residua
		S S S	R-6 R-5 R-16 24 R-10 24 Int	Unheate	R-10 R-11 fl R-30 fl Int	Infilt ELF A .0007(. .0005(.	Slope/ Curve/
nponent (KBtu)	(/sf) 38.33 17.55 11.59 9.66 6.27	1689.41 81.306 (/ft)	175.67 105.33 85.17 89.17 61.17 .000 .558.96	(/sf)	25.77 3.78 -1.94 -2.82 -7.120 584.06	(/sf) 169.49 67.41 42.15 12.44	179.01 47.010
Delta Con (MBtu)	. 60 - 6.59 - 7.53 - 9.57 - 9.95 - 10.95	e(DD) e(DDS) asement	-10.19 -12.30 -12.91 -12.79 -13.63 -13.63 e(DD)		-13.19 -15.35 -16.62 -16.92 -17.75 -17.75 -17.75 -100)	-value .000 -14.700 -18.34	e(DD) 5 e(DDS) MBtu MBtu MBtu
	W R R R R R R R R R R R R R R R R R R R	Slop Curv Heated B	R-6 R-5 R-5 8ft R-10 4ft R-10 8ft Inte Slop	Crawl	R-0 R-11 R-19 f-1 R-30 f-1 R-49 f-1 Inte	Window U	Slope Curve 92.10 N 25.49 N 7.54 N
mponent (KBtu)	(/sf) 42.00 15.98 11.83 8.10 8.10 5.11 4.08	7363.18 -47.151 (/ft)	88.83 46.67 34.50 39.17 22.83 -10.766 1278.88	t (/sf)	8.78 2.60 .31 -1.17 -5.307 5718.72	(/sf flr) 19.80 13.33 7.50	22.562 8.177 8.177 6 Load = 1 Load = 1 Load = 1
Delta Co (MBtu)	Ceiling R-0 R-7 .000 R-11 -18.10 R-19 -20.34 R-22 -21.11 R-30 -22.13 R-49 -23.25 R-60 -23.57	Slope(DD) Curve(DDS) Slab	2ft -14.06 4ft -14.43 2ft -14.28 4ft -14.28 intercept : 3lope(DD) 1	Ва	1 flr -13.98 9 flr -15.28 0 flr -16.16 Intercept Slope(DD) Curve(DDS) -		Slope/.001ELF Curve/.001ELF Base Typical
	Component Delta Component Delta Component Delta C 1) (KBtu) (MBtu) (KBtu) (MBtu)	Delta Component Delta Component (MBtu) (KBtu) (MBtu) (MBtu) (KBtu) (MBtu) (MBtu	Delta Component (MBtu) (MBtu) (KBtu) (MBtu) (KBtu) (MBtu)	MBtu MBtu	Delta Component (MBtu) (KBtu)	Watu (KBtu) (KBtu	18 18 18 18 18 18 18 18

Cooling Load	Delta Component (MBtu) (KBtu)	Wall R-0 2.61 R-7 -1.45 1.32 R-11 -1.66 1.14 R-13 -1.95 .88 R-19 -2.09 .75	-2.7 -2.31 -34 -2.45 lope(DD) 580 urve(DDS) -13.	-0 -2.89 2 -5 4ft -3.17 -5 8ft -3.16 -10 4ft -3.26 -10 8ft -3.26	Crawl (/sf) R-0 .00 2.14 R-11 flr .88 2.71 R-19 flr .94 2.75 R-38 flr 1.02 2.80 R-38 flr 1.09 2.82 R-49 flr 1.09 2.85 Intercept 2.872 Slope(DD) -80.06 Curve(DDS) -12.173	Window U-value (/sf) 1-Pane .00 2.43 2-Pane25 1.08 3-Pane32 .68 R-1041 .22	Slope(DD) 91.81 Curve(DDS) .016 20.33 MBtu 6.98 MBtu -1.96 MBtu
Coo	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 5.42 R-7 -5.00 2.17 R-11 -5.80 1.65 R-19 -6.52 1.18 R-22 -6.79 1.01	-38 -7.15 -38 -7.37 -49 -7.59 -60 -7.74 lope(DD) 1111 urve(DDS) -33.	Slab (/ft) 2ft -4.58 -7.72 2ft -4.37 -6.46 4ft -4.21 -5.49 2ft -4.31 -6.10 1ntercept -4.11 -4.89 Slope(DD) -984.39 Curve(DDS) 41.750	Unheated Basement (/sf) (R-0	Infiltration (/sf flr) WELF Ach .0007(.58) .00 .98 .0005(.42)47 .68 .0003(.25)91 .39	Slope/.001ELF 1.234 Curve/.001ELF .244 Base Load = Typical Load = Residual Load =
Heating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 -18.92 16.01 R-11 -21.61 13.62 R-13 -24.87 10.72 R-19 -26.48 9.28	-27 -23.48 5.0 -34 -31.20 5.0 lope(DD) 6627.8 urve(DDS) -96.87	-0 -16.35 116.9 -5 4ft -23.03 76.7 -5 8ft -25.20 63.6 -10 4ft -24.79 66.11 -10 8ft -28.14 45.9 Intercept -28.14 45.9 Slope(DD) 4723.4 Curve(DDS) -45.20	Crawl (/sf) R-0 .00 23.22 R-11 flr -29.71 3.93 R-19 flr -34.79 .63 R-30 flr -38.74 -1.93 R-38 flr -38.74 -1.93 R-49 flr -40.86 -3.31 Intercept -6.456 Slope(DD) 6450.79 Curve(DDS) -129.310	1-Pane .00 158.16 2-Pane -15.65 73.47 3-Pane -20.61 46.64 R-10 -26.44 15.08	Slope(DD) 6453.57 Curve(DDS) -17.531 = 178.08 MBtu = 56.12 MBtu
Ĭ.	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 34.40 R-7 -31.83 13.73 R-11 -36.91 10.43 R-19 -41.47 7.47 R-22 -43.23 6.33	-30 -45.59 4.0 -38 -47.01 3.8 -49 -48.27 3.0 -60 -49.09 2.5 lope(DD) 6977.5 urve(DDS) -198.30	Slab	Unheated Basement (/sf) R-0 R-11 flr -30.76 3.25 R-19 flr -34.83 .60 R-30 flr -37.45 -1.10 Intercept -5.678 Slope(DD) 6233.26 Curve(DDS) -520.246	Infiltration (/sf flr) ELF Ach .0007(.89) .00 21.74 .0005(.64) -9.79 15.38 .0003(.39)-19.40 9.14 '	Slope/.001ELF 30.032 Curve/.001ELF 1.461 Base Load = Typical Load = Residual Load =

One Story Prototype Siding

WYEC

Chicago IL

(MBtu) (KBtu) (MBtu) (KBtu) (Mstu) (KBtu) (Sf) (Sf) (Sf) (Sf) (Sf) (DS) (DS) (DS) (DS) (Sf) (Sf	tr tr tr
	֓֞֜֞֜֜֜֜֞֜֜֞֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
Control Cont	3.70 MB 8.70 MB 3.26 MB
(/sf) (/sf) (/sf) (/sf) (/sf) (/sf) (/ft) (/ft) (/ft) (/ft) (/ft) (/sf)	se Load al Load al Load
Copt	Bas Typics Residus
Series Ceilin R-0 R-0 R-11 R-11 R-13 R-13 R-13 R-14 R-18 Slope Curve Curve Curve Curve Slope Curve Curve Curve Slope Curve Curve Curve Curve Slope Curve	
onent (/sf) 32.12 32.12 15.18 12.77 12.77 9.68 6.18 4.69 4.69 4.69 7.88.34 7.31 13.993 (/ft) (/ft) (/ft) (/ft) 13.993 (/ft) (/ft) (/ft) 139.18 83.18 83.18 83.18 67.68 788.34 788.34 788.34 788.34 (/sf) (/sf) (/sf) (/sf) (/sf) (/sf) (/sf) 23.88 61.26 (/sf) (/sf) (/sf) (/sf) 143.23 61.22 61.22 38.56 143.23 61.22 38.56 11.91 11.91	
	M8tu M8tu M8tu
id Town Wall Wall R-0 R-0 R-13 R-13 R-13 R-13 R-13 R-13 R-27 R-27 R-34 R-27 R-34 R-34 R-27 R-34	86.28 MB 25.45 MB 1.18 MB
MYEC M Hean mponent (KBtu) (/sf) 35.96 13.92 13.92 16.41 7.25 6.12 4.62 3.71 2.93 2.43 668.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.75 68.93 3.71 2.93 3.71 2.93 3.75 68.93	222
Chicago IL (MBtu) (Geiling R-0 R-0 R-13.22 R-13.22 R-13.22 R-19.35 R-19.35 R-38 -19.35 R-38 -19.35 R-38 -19.35 R-38 -19.35 R-49 -19.82 R-9 -19.82 R-19 4ft -12.95 R-10 4ft -12.95 R-10 4ft -13.73 R-10 4ft -13.73 R-10 4ft -13.33 R-10 4ft -13.35 Intercept Slope(DD) Curve(DDS)	T, Res

		omponent (KBtu)	(/sf) 2.24	- 0	~ (D A	m 1		486.69 -13.186	(/ft)		. 78	05	. 55	.00.	-50.24 1.724	(/sf)	1.43	2.17	2.27	2.44	$^{\circ}$	2,5	15.	(/sf)	1.6	σ.	-1.29	.245.39 6.928	
	P	Delta Com (MBtu)	ė,	1 1	1 -	1 1 4 11			(SQQ) (DDS)	asement	•		8.	φ. ο	ı.o rcept	(SQQ) (DDS)		.00	•	•		•	0 c	(500)	-value	ø	e04	. 16	• (DD) • (DDS)	MBtu MBtu MBtu
	Cooling Loa		. 8a - 8a	77	R-13	٦ ،	3 6		Slop	Heated B	,	R-0 R-5 4ft	ω φ	4 6 6	- 16 In	Slop	Crawl	9	-11 fl	-19 4	R-38 flr	-49 fl		200	Window U	-Pan	-Pan	3-Pan R-10	Slop	12.06 7.68 2.56
	ος	omponent (KBtu)	(/sf) 4.96	۰ m	9.0	7 O	. 4.	. 328	855.31 -3.111	(/ft)	•	-13.22 -11.39		-10.55	ניז ו	652.06 71.558	(/sf)	ø	ö	1.36			2.1	79.250	/sf flr)	.67	.45	. 25	. 365	Load III
Two		(MBtu)	ø.	0.0	-2.41	ν. ο α	2.7	2.7	(S00)		6	28	.15	8 5	-1.12 cept	(00) (008)	Basement	œ	25	60. 44.00		•	Sept.	(500)	tion (/	ø.	·	2	01ELF 01ELF	Base Typica Residua
Series		۵	Ce :	77	R-19	7 6) (P)	4-0	Slope	Slab		R-0 R-5 2ft	-5 4f	-10 2f	-10 41t Inter		Unheated	6	-11 f	R-19 + r	-	•	Inter	9 × × × × × × × × × × × × × × × × × × ×	t.	.0007 (.58	ت	ت.	Slope/.0018 Curve/.0018	
e Siding		Component (KBtu)	(/sf) 32.45	9 0	8.6	4 0	òά		91.16 6.534	(/ft)		9 2	ယာ	ດາຈ	ņ.	37.97 2.913	(/sf)	•	ó	3.20	77.	,	ω. 4. 4	2.8	(/sf)	4.4	60.8	38.28 11.73	38.34 Ø.127	
Prototyp		elta Comp (MBtu) (øi,	9	-7.17	۳ ب	9.00		(DD) 58 (DDS) 2	sement		-10.35 1	σ,	∞ n	-13.50 apt	(DD) 63 (DDS) -3		ø		<u> ۲</u>	-14.74	. 52	ď	_	value ·		12.03	-15.28 -19.10	(DD) 49 (DDS) 2	MBtu MBtu MBtu
MApartment	ing Load	۵	Wa-1	77	1	٦٠,	1 1		Slope	Heated Bas	١	R-6 R-5 4ft	-5 8	-10 44	-10 of t Inter	Slope	Crawi	9-	-11 fir	114 661	ـ ـ	-49 flr	ter		Window U-	-Pan	4	3-Pane R-10	Slope	81.94 ME 23.45 ME 1.25 ME
WYEC MA	Heati	(KBtu)	(/sf) 35.26	0 G	.0.	مند	. 13	ໝຸ ຕຸ	177.18 39.410	(/ft) H	. 1	83 99	9.33	3.00	603 . 603	534.83 98.337	(/sf) (80.	, 0,	.81	1		2.34	27.184	/sf fir) V	9.7	13.55	7.7	24.207 5.782	E Load = Coad =
		Delta Compo (MBtu) (KI	ø.	12.9	901	17.5	19.0	-19.44 -19.73	(DD) 64 (DDS) -8		•	^ı ~	9	ص. د	-14.33 cept	(S00) 8 (Q00)	Basement	10.3	13.1	-14.12			ep Sp	(DDS) 42) uoi	ė	-7	-14.3	Ø1ELF 2 Ø1ELF	Base Typical Residual
Chicago I		ā	Ce:		R-19	7 0	ს . ს რ.	-6	Slope	Slab			-5 4f	-10 2f	-10 41t Inter	0 V	Unheated	R-0	-11 fl	R-19 fir	- 000		nter	Curve (د د	. 0007 (.89)	9	4.	Stope/.Ø Curve/.Ø	

	4	(KBtu)	(/sf) 2.93 1.56	. m	ø.	67	. 23		687.52 26.364	(/ft)	•	1.42		ω,	.000 46.25 1.221	(/sf)	2.00	2.61	2.68	CV.	21.4	(/sf)	1.02 .32 .19 .05	17.44	
_	:	elta Co (MBtu)	99. R	1.7	-2.12	, c	2.7		e(DD) e(DDS) -	asement	•	779	2.6.	-2.9	cept e(DD) e(DDS)		•	••,	1.03	-i +	e (DDS) -	U-value		(00) (00) (00)	MBtu MBtu MBtu
	ooling Load	٥	¥8 - 8- 0 - 6 - 1	7	R-13	٦ °	18		Slop	Heated B		4- 4	-16	-10 8f	Mate Slope Curv	Crawf	9-	-11 +1	R-30 flr R-38 flr	-49 fl	Slop	Window	1-Pan 2-Pan 3-Pan R-10	Slop Curv	= 20.69 = 7.11 = -2.20
,	U	ponent (KBtu)	(/sf) 5.86	1.83	1.33	1.13	92.	.55 .45	1255.68 -44.991	(/ft)		-7.3	9.4	9.6	-84 46	t (/sf)	4.	1.66	2.2	;	2.81/ -8Ø5.73 65.667	(/sf flr)	. 76 6 .53 0 .31	.974	Base Load : ical Load : dual Load :
s Two		Delta Com (MBtu)	gui 8.	9.6	6.91	-7.2	-7.9	-8.19	(DD) (DDS)	م			<u>ء</u> و	10.6	(00) (00) (00s)	d Basement	4		۳. س		Intercept Slope(DD) Curve(DDS)	ration	54) .0 39)3 23)7	001ELF 001ELF	Typid Resid
Serie			Reil	` -	۳.	?		1 1	Slop Curv	Slat		•	-5 4f	-10 21 -10 4f	Interest	Unheated	R-0	R-11 f	-3Ø f		Int Slo	Infilt	298	Slope/ Curve/	
e Siding		onent KBtu)	(/sf) 27.85	დ. დ. ძ	9.1	o.	- a		61.34 39.979	(/ft)	-	97.82	3.1	ω α 4. α	967.12 967.12 38.115	(/sf)	ı,	2.4	. 80	1 W	-5 17 17	(/sf)	131.50 61.96 39.38 12.83	500.18 19.668	
Prototyp		elta Comp (MBtu) (0	o, c	10	4	-24.89		(DD) 56	400			-18.2	-17.8	.cept (00) 3 (00s) -		88	w u	-29.91	. 	cept 8(00) 8(00S)	-value	e -12.85 e -17.02 -21.93	e(DD) 5	MBtu MBtu MBtu
e Story	ing Load	۵	¥a	-7	7 ~	7	- 1 -		Slope	4	Heated Da	10 M	. w	-100-	-16 ate Inte Slop Curv	Crawl	0	-11 +1	R-30 flr	-38	Int Se	Window U	1-Pan 2-Pan 3-Pan 8-10	Slop	143.38 44.26 2.00
TMY On	Heat	onent KBtu)	/sf	5.7	o; ⊿			2	: ```ò		(/tt)	2.5	၀့ ဖ	4.0	8.30 14.907 086.38 01.690	(/sf		2.41	-1.25		-5.096 5214.56 122.115	/sf f		20.292	se Load == load == load ==
H		elta Compoi (MBtu) (Kl	, 50 50 50	27.6	32.0	 	39.5	-41.89	-42.56 (DD) 6	(eaa)		-18.3	-22.98	-23.8	-25.6 cept (00)) Ç		-16.83	26.7 29.0		Intercept Slope(DD) 5		١	.001ELF	Ba Typic Residu
Cincinnati		å	. <u>.</u>	R-7	7,	٦٢	1 (1)	R - R - R - R - R - R - R - R - R - R -	99- 10-	0	Slab	5 19	R-5 2ft R-5 4ft	-10 2ft	-10 4ft Intel Slop		9 8 9	4	R-19 flr R-30 flr		Slop	Tofiltr	ELF Ach .0007(.80) .0005(.58) .0003(.35)	Slope/.	

		omponent (KBtu)	(/sf) 2.56 1.26 1.07 1.07 .74 .53	526.97 -9.373 (/ft)	4.73 2.73 2.23 1.48 1.48 1.98 129.76	(/sf)	2.35 2.35 2.53 2.53 2.53 2.665 198.18	(/sf) -4.13 -3.99 -2.65 -1.07	486.38 12.497
	Cooling Load	Delta Co (MBtu)	Wall R-0 R-762 R-1171 R-1382 R-1987 R-2797 R-34 .1.03	Slope(DD) Curve(DDS) Heated Basement	R-Ø R-5 4ft92 R-5 8ft94 R-1Ø 4ft97 R-1Ø 8ft97 Intercept Slope(DD) Curve(DDS)	Crawl	R-0 R-11 flr .38 R-19 flr .43 R-30 flr .48 R-38 flr .49 R-49 flr .52 Intercept .52 Slope(DD) .	Window U-value 1-Pane .00 2-Pane .02 3-Pane .21 R-10 .44	Slope(DD) - Curve(DDS) 13.65 MBtu 8.69 MBtu 3.24 MBtu
ding Series Two	ပိ	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 -2.003 2.17 R-11 -2.35 1.63 R-19 -2.64 1.15 R-22 -2.74 .97 R-38 -2.97 .60 R-49 -3.05 .38	Slope(DD): 1065.15 Curve(DDS) -21.795 Slab (/ft)	R-0 R-5 2ft -1.54 -12.77 R-5 4ft -1.47 -11.02 R-10 2ft -1.52 -12.27 R-10 4ft -1.43 -10.02 Intercept -4.385 S!ope(DD) -1931.61 Curve(DDS) 93.376	Unheated Basement (/sf)	R-0 R-11 flr14 1.48 R-19 flr .12 1.91 R-3Ø flr .28 2.18 Intercept 2.95Ø Slope(DD) -1Ø59.94 Curve(DDS) 1Ø6.5Ø5	Infiltration (/sf flr) ELF Ach .0007(.54) .00 .61 .0005(.36)22 .42 .0003(.22)43 .25	Slope/.001ELF .792 Curve/.001ELF .104 Base Load = Typical Load = Residual Load =
Town Prototype Si	eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 R-13 R-13 R-13 R-19 R-19 R-19 R-27 R-19 R-19 R-27 R-19 R-19 R-19 R-19 R-19 R-11 R-	Slope(DD) 5024.58 Curve(DDS)409 Heated Basement (/ft)	R-Ø -6.25 112.81 R-5 4ft -8.09 66.81 R-5 8ft -8.59 54.31 R-1Ø 4ft -8.51 56.31 R-1Ø 8ft -9.22 38.56 Intercept .000 Slope(DD) 3830.70 Curve(DDS) -25.395	Crawl (/sf)	R-0 R-11 flr -8.55 3.69 R-19 flr -10.00 1.27 R-30 flr -10.8921 R-38 flr -11.0955 R-49 flr -11.67 -1.52 Intercept -3.796 Slope(DD) 4605.66 Curve(DDS) -71.642	Window U-value (/sf) 1-Pane .00 118.74 2-Pane -9.65 51.72 3-Pane -12.40 32.64 R-10 -15.63 10.19	Slope(DD) 4318.25 Curve(DDS) 6.792 67.79 MBtu 18.87 MBtu .47 MBtu
Cincinnati OH TMY	H	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 30.94 R-7 -11.41 11.92 R-11 -13.23 8.89 R-19 -14.87 6.16 R-22 -15.44 5.20 R-36 -16.67 3.16 R-49 -17.33 2.06	Slope(DD) 5650.38 Curve(DDS) -72.804 Slab (/ft)	R-0 -8.71 51.31 R-5 2ft -9.83 23.31 R-5 4ft -10.12 16.06 R-10 2ft -10.02 18.56 R-10 4ft -10.43 8.31 Intercept -11.917 Slope(DD) 6028.90 Curve(DDS) -41.168	Unheated Basement (/sf)	R-0 -6.25 7.52 R-11 flr -9.22 2.57 R-19 flr -10.19 .96 R-30 flr -10.8108 Intercept -2.940 Slope(DD) 3925.81 Curve(DDS) -367.746	Infiltration (/sf flr) ELF Ach .0007(.81) .00 13.38 .0005(.60) -5.05 9.17 .0003(.35) -9.73 5.27	Slope/.001ELF 16.417 Curve/.001ELF 3.854 Base Load = Typical Load = Residual Load =

	Cooling Load	Delta Component (MBtu) (KBtu)	() () () () () () () () () () () () () (-1957 - 3 -2759 - 2 -3461 - 2	Slope(DD) 216.04 Curve(DDS) 32.979 Heated Basement (/ft)	R-0 R-5 4ft77 2.83 R-5 8ft77 2.83 R-10 4ft79 2.00 R-10 8ft80 1.66 Intercept .80 1.000 Slope(DD) 171.99 Curve(DDS) -1.493	Crawl (/sf)	R-0 R-11 flr .48 2.22 R-19 flr .67 2.37 R-3Ø flr .64 2.49 R-38 flr .66 2.52 R-49 flr .71 2.59 Intercept 2.75Ø Slope(DD) -344.98 Curve(DDS) 16.586	r) Window U-value (/sf) 1-Pane .00 -2.37 2-Pane .01 -2.33 3-Pane .12 -1.55 R-10 .2563	Slope	= 12.10 MBtu = 7.70 MBtu = 2.55 MBtu
ing Series Two	ပိ	Delta Component (MBtu) (KBtu)	eiling (/sf -0 .00 5.2 -7 -2.00 1.9 -11 -2.31 1.3	R-19 -2.00 .31 R-22 -2.00 .37 R-30 -2.81 .57 R-49 -2.93 .36 R-60 -2.96 .31	Slope(DD) 810.41 Curve(DDS) 12.618 Slab (/ft)	R-Ø R-E 2ft -1.19 -11.34 R-E 4ft -1.11 -8.67 R-10 2ft -1.13 -9.34 R-10 4ft -1.09 -8.00 Intercept -4.958 Slope(DD) -1009.43 Curve(DDS) 39.431	Unheated Basement (/sf)	R-0 R-11 flr07 1.29 R-19 flr .17 1.69 R-30 flr .32 1.95 Intercept 2.675 Slope(DD) -1001.83 Curve(DDS) 102.197	Infiltration (/sf flr ELF Ach .0007(.54) .000 .44 .0005(.39)19 .28 .0003(.23)35 .15	.36	Base Load Typical Load Residual Load
MApartment Prototype Sidir	eating Load	Delta Component (MBtu) (KBtu)	4.1. Ø.6.5.	-13 -6.03 8.2 -19 -6.39 7.0 -27 -7.03 5.0 -34 -7.41 3.8	Slope(DD) 4895.17 Curve(DDS) 30.633 Heated Basement (/ft)	R-0 R-5 4ft -9.16 75.76 R-5 8ft -9.59 61.43 R-10 4ft -9.53 63.59 R-10 8ft -10.13 43.43 Intercept .0000 Slope(DD) 4283.57 Curve(DDS) -25.843	Craw! (/sf)	R-0 .00 19.05 R-11 flr -8.72 4.53 R-19 flr -10.18 2.09 R-30 flr -11.10 .55 R-38 flr -11.32 .20 R-49 flr -11.3282 Intercept -3.125 Slope(DD) 4725.73 Curve(DDS) -78.071	.) Window U-value (/sf) 1-Pane .00 117.58 2-Pane -9.72 50.11 3-Pane -12.39 31.56 R-10 -15.53 9.73	Slope(DD) 4106.88 Curve(DDS) 13.139	= 63.71 MBtu = 17.09 MBtu = .68 MBtu
Cincinnati OH TMY	9H	Delta Component (MBtu)	(/sf -0 .00 30.1 -7 -11.18 11.5 -1 -12.97 8.5	R-19 -14.57 5.90 R-22 -15.12 4.97 R-30 -15.87 3.74 R-38 -16.31 2.99 R-49 -16.92 1.98	lope(DD) 5381 urve(DDS) -49.	2ft -10.37 35. 4ft -10.37 35. 2ft -10.61 27. 2ft -10.62 30. ntercept -1.9 intercept -1.9 urve(DD) 6404.	ted Basement (/s	R-0 R-11 flr -9.86 2.63 R-19 flr -10.69 1.24 R-30 flr -11.22 .35 Intercept -2.133 Slope(DD) 3429.76 Curve(DDS) -340.028	Infiltration (/sf flr ELF Ach .0007(.81) .00 13.30 .0005(.60) -5.03 9.10 .0003(.35) -9.69 5.22	Slope/.001ELF 16.228 Curve/.001ELF 3.959	Base Load Typical Load Residual Load

	7 7 7 7	Wall (/sf) R-0 .00 2.96 R-7 -1.65 1.50 R-11 -1.88 1.29 R-13 -2.24 .97 R-19 -2.42 .81 R-27 -2.64 .61	Slope(DD) 619.25 Curve(DDS) -12.749 Heated Basement (/ft)	R-0 -2.70 2.70 R-5 4ft -3.03 .71 R-5 8ft -3.01 .71 R-10 4ft -3.11 .23 R-10 8ft -3.11 .23 Intercept .000 Slope(DD) 4.94 Curve(DDS) 1.602	· Crąwi (/sf)	R-0 R-11 flr .58 2.42 R-19 flr .59 2.43 R-38 flr .61 2.44 R-48 flr .61 2.44 Intercept .62 2.45 Slope(DD) 26.45 Curve(DDS) -19.770	. 1-Pane00 3.40 2-Pane28 1.89 3-Pane40 1.21 R-1055 .42	Slope(DD) 185.70 Curve(DDS) -2.154 = 19.16 MBtu = 3.77 MBtu = -3.68 MBtu
ding Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 6.91 R-7 .6.48 2.70 R-11 .7.52 2.02 R-19 .8.45 1.42 R-22 .9.78 1.20 R-38 .9.50 .74 R-49 .9.75 .58 R-60 .9.91 .47	Slope(DDS) 1315.38 Curve(DDS) -25.323 Slab (/ft)	R-0 -3.96 -4.89 R-5 2ft -3.79 -3.87 R-6 4ft -3.76 -3.33 R-10 2ft -3.76 -3.63 R-10 4ft -3.62 -2.84 Intercept996 Slope(DD) -649.47 Curve(DDS) 26.830	Unheated Basement (/sf)	R-0 -2.70 .29 R-11 flr -1.21 1.26 R-19 flr80 1.53 R-30 flr53 1.70 Intercept 2.164 Slope(DD) -630.89 Curve(DDS) 51.786	Infiltration (/sf flr) ELF Ach .0007(.62) .00 .36 .0005(.45)16 .26 .0003(.27)32 .16	Slope/.001ELF .519 Curve/.001ELF .000 Base Load Typical Load Residual Load
One Story Prototype Sid Heating Load))) : :	Wall R-0 R-7 R-1 R-11 R-11 R-13 R-13 R-19 R-19 R-25 R-27 R-34 R-34 R-36 R-37 R-36 R-37 R-36 R-37 R-36 R-3	Slope(DD) 6475.21 Curve(DDS) -102.898 Heated Basement (/ft)	R-Ø -9.02 101.68 R-5 4ft -14.40 69.28 R-5 8ft -16.43 57.05 R-10 4ft -15.86 60.48 R-10 8ft -18.94 41.93 Intercept .000 Slope(DD) 4511.61 Curve(DDS) -49.062	Crawl (/sf)	R-0 .00 16.82 R-11 flr -26.1919 R-19 flr -30.67 -3.10 R-30 flr -33.44 -4.90 R-30 flr -34.07 -5.31 R-49 flr -35.89 -6.31 R-49 flr -35.89 -6.31 R-60 flr -35.89 -6.31 Curve(DDS) -101.000	r) Window U-value (/sf) 1-Pane .00 148.09 2-Pane -14.39 70.22 3-Pane -19.11 44.65 R-10 -24.67 14.59	Slope(DD) 6261.38 Curve(DDS) -24.700 = 155.85 MBtu = 47.79 MBtu = 8.23 MBtu
Denver CO WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 34.17 R-7 -31.53 13.70 R-11 -36.57 10.43 R-19 -41.09 7.49 R-20 -42.85 6.35 R-30 -46.51 4.81 R-49 -47.91 3.06 R-60 -48.73 2.53	Slope(DD) 7012.62 Curve(DDS) -210.575 Slab (/ft)	R-0 -16.79 54.88 R-5 2ft -22.04 23.25 R-6 4ft -23.56 14.09 R-10 2ft -23.01 17.41 R-10 4ft -25.10 4.82 Intercept -21.627 Slope(DD) 8533.28 Curve(DDS) -142.963	Unheated Basement (/sf)	R-0 R-11 flr -24.49 .92 R-19 flr -28.71 -1.83 R-30 flr -31.43 -3.59 Intercept -8.315 Slope(DD) 6411.00 Curve(DDS) -517.169	Infiltration (/sf flr ELF Ach .0007(.75) .00 15.22 .0005(.54) -6.97 10.69 .0003(.32)-13.72 6.31	Slope/.001ELF 20.487 Curve/.001ELF 1.786 Base Load Typical Load Residual Load

		omponent (KBtu)	(/sf) 3.47 1.85 1.62	4 Ø Ø Ø	826.29 33.669 (/ft)		(/sf)	1.69 2.09 2.11 2.13 2.13 2.13 7.93	(/sf) 1.72 .68 .43	51.95 .503	
		elta Com (MBtu)	11-	-1.15 -1.27 -1.35	(DD) (DDS) -	98 -1.64 -1.63 -1.66 -1.94 (DD) (DD)			value 08 15 19	(\$99) (90)	M8tu M8tu M8tu
	ing Load	Õ	Wa-1 R-6 R-11	R-19 R-27 R-34	Slope Curve	6 4ft 5 8ft 10 4ft 10 8ft Inter Slope Curve	- X & L	-0 -11 fr -19 fr -38 fr -49 fr -49 fr -49 fr -70 fr -70 fr -70 fr	indow U-v 1-Pane 2-Pane 3-Pane R-10	Slope	12.23 M 5.99 M 1.47 M
	Coolin	+~	~~~ o	0 4 0 6 16 16	=	~ www.ww.w <i>\\</i>	ت م		2 8 8 ×	e ∺	וווו סיסים
		mponent (KBtu)	/sf 2.3 2.8	2	484.3 47.51 (/ft	-12.8 -11.3 -10.5 -11.0 -9.8 -7.04 42.12	(/sf	1.84 1.84 1.84 1.84 1.84	/sf f .2 .8	Ø8 . 52	- Loa
Two		റ്ട	9000		0) 1 0S) -	-1.53 -1.47 -1.44 -1.46 -1.46 -1.41 (00) (00)	sement	98 42 27 17 17 0)	on. .000 13	ELF	Bas Typica esidua
eries T		Delta (MBt	- 10g	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lope (Diurve (Diah	∟ 0 0	ted Ba	fir fir fir fir Intercept Slope(DD) Curve(DDS)	ltrati Ach (.62) (.45) (.27)	e/.0011 e/.001	œ.
Ser				چەرەپەرەپەرە	ัดฮ์ พี		Unheat	R-6 R-11 R-19 R-36 CC	Inf: ELF .0007 .0005	Slop	
 9											
70			-500	* m m m	5 00 -		_	0 / O 0 O 0 / O 0 O 0		- G	
Pis		ponent (KBtu)	(/sf) 3ø.1ø 13.99 11.69	5.00	419.8Ø 32.776 (/f+)	106. 61. 48. 51. 34. 517.	(/sf)	16.85 1.39 -1.20 -2.62 -3.89 -6.236 1572.62	(/sf) 118.64 47.39 29.64 8.78	31.716	
Pis		ta Component 3tu) (KBtu)	.00 30.1 7.68 13.9 8.77 11.6	6.66 7.7 1.68 5.5 2.31 4.2	5419.8	.84 106 .67 61 .16 48 .16 48 .17 51 .72 34 .3517	Sf	900 1000 1000 1000 1000 1000 1000 1000	lue (/sf .ØØ 118.6 1Ø.26 47.3 12.82 29.6 15.82 8.7	3656.5	כככ
Prototype Sid	peo	Delta Component (MBtu) (KBtu)	/sf .00 30.1 -7.68 13.9 -7.68 13.9	3 -10.03 9.0 9 -10.66 7.7 7 -11.68 5.5 4 -12.31 4.2	ope(DD) 5419.8 rve(DDS) 32.77 Basement (/f+	ft -7.67 61 ft -8.16 48 ft -8.07 51 ft -8.07 51 ft -8.07 51 ft -8.72 34 tercept 3517 ope(DD) 3517	Sf	. 00 16 1	U-value (/sf ane .00 118.6 ane -10.26 47.3 ane -12.82 29.6 0 -15.82 8.7	ope(DD) 3656.5 rve(DDS) 31.71	51 MBtu 73 MBtu 36 MBtu
Town Prototype Sid	ing Loa	elta ((MBtu)	/sf .00 30.1 -7.68 13.9 -8.77 11.6	-13 -10.03 9.0 -19 -10.66 7.7 -27 -11.68 5.5 -34 -12.31 4.2	pe(DD) 5419.8 ve(DDS) 32.77	-0 -5.84 106 -5 4ft -7.67 61 -5 8ft -8.16 48 -10 4ft -8.07 51 -10 fft -8.72 34 Intercept -8.72 34 Slope(DD) 3517 Curve(DDS) -20.	Sf	.000 16 -9.28 1 -10.83 -1 -11.68 -2 -11.88 -2 -12.44 -6 pe(DD) 4572 ve(DD) 4572 ve(DDS) -13.	U-value (/sf ne .00 118.6 ne -10.26 47.3 ne -12.82 29.6 -15.82 8.7	pe(DD) 3656.5 ve(DDS) 31.71	
Mid Town Prototype Sid	ng Loa	t Delta (f) Wall (/sf 41 R-0 .00 30.1 67 R-7 -7.68 13.9 19 R-11 -8.77 11.6	08	21 Slope(DD) 5419.8 31 Curve(DDS) 32.77	9 R-0 -5.84 106 14 R-5 8ft -7.67 61 14 R-10 4ft -8.07 51 16 R-10 8ft -8.07 51 15 Intercept -3.17 351 16 Slope(DD) 3517 18 Curve(DDS) -20.	;) Crawl (/sf	12 R-0 24 R-11 flr -9.28 69 R-19 flr -10.83 -1 8-38 flr -11.68 -2 8-38 flr -11.88 -2 R-48 flr -12.44 -6 51 Slope(DD) 4572 42 Curve(DDS) -13.	indow U-value (/sf 1-Pane .00 118.6 2-Pane -10.26 47.3 3-Pane -12.82 29.6 R-10 -15.82 8.7	16 Slope(DD) 3656.5 63 Curve(DDS) 31.71	ad = 71.51 ad = 18.73 ad = 7.86
Town Prototype Sid	eating Loa	omponent Delta ((KBtu) (MBtu)	(/sf) Wall (/sf 36.1 a.00 30.1 a.01 a.01 a.01 a.01 a.01 a.01 a.01 a	R R-13 -10.03 9.0 R R-19 -10.66 7.7 R R-27 -11.68 5.5 1 R-34 -12.31 4.2 6	Slope(DD) 5419.8 Curve(DDS) 32.77	8 40.79 R-0 -5.84 106 9 10.54 R-5 4ft -7.67 61 9 3.04 R-5 8ft -8.16 48 9 5.54 R-10 4ft -8.07 51 -22.065 Intercept -3.17 5417.98 Curve(DDS) -20.	t (/sf) Crawl (/sf	7 1.2 R-0 .00 16 369 R-19 flr -9.28 17 7 -1.93 R-30 flr -11.68 -2 R-38 flr -11.88 -2 R-49 flr -12.44 -6 Slope(DD) 4572 Curve(DDS) -13.	(/sf flr) Window U-value (/sf b 12.61 1-Pane .00 118.6 1 8.35 2-Pane -10.26 47.3 9 4.62 3-Pane -12.82 29.6 R-10 -15.82 8.7	6 Slope(DD) 3656.5 3 Curve(DDS) 31.71	se Load = 71.51 al Load = 18.73 al Load = 7.86
Mid Town Prototype Sid	eating Loa	Component Delta (J) (KBtu) (MBtu)	9 (/sf) Wall (/sf) -13.05 13.67 R-7 -7.68 13.9 -15.13 10.19 R-11 -8.77 11.6	7.08 R-13 -10.03 9.0 6.98 R-19 -10.66 7.7 4.50 R-27 -11.68 5.5 3.61 R-34 -12.31 4.2 2.38	S) -87.831 Curve(DDS) 5419.8 Curve(DDS) 32.77	-8.48 40.79 R-0 -5.84 106 -9.69 10.54 R-5 4ft -7.67 61 -9.99 3.04 R-5 8ft -8.16 48 -9.89 5.54 R-10 4ft -8.07 51 -10.27 -3.96 R-10 4ft -8.72 34 cept -22.065 Intercept (DD) 5417.96 Curve(DD) 3517	nent (/sf) Crawl (/sf	84 7.12 R-0 .00 16 37 1.24 R-11 flr -9.28 15 5369 R-19 flr -10.83 -1 27 -1.93 R-30 flr -11.68 -2 R-38 flr -11.88 -2 R-49 flr -12.44 -6 5.353 Intercept -6 5.4696.30 Slope(DD) 4572 Curve(DDS) -13	tion (/sf flr) Window U-value (/sf) .00 12.61 1-Pane .00 118.6	ELF 13.416 Slope(DD) 3656.5 ELF 6.563 Curve(DDS) 31.71	6 Load = 71.51 Load = 18.73 Load = 7.86
Mid Town Prototype Sid	eating Loa	omponent Delta ((KBtu) (MBtu)	eiling (/sf) Wall (/sf -0 .00 35.41 R-0 .00 30.1 -7 -13.05 13.67 R-7 -7.68 13.9 -11 -15.13 10.19 R-11 -8.77 11.6	17.00 7.08 K-13 -10.05 9.0 17.66 5.98 R-19 -10.66 7.7 18.55 4.50 R-27 -11.68 5.5 19.08 3.61 R-34 -12.31 4.2 19.82 2.38	pe(DD) 6493.21 Slope(DD) 5419.8 ve(DDS) -87.831 Curve(DDS) 32.77	2ft -9.69 10.54 R-6 4ft -7.67 61 4ft -9.99 3.04 R-5 8ft -8.16 48 2ft -9.99 3.04 R-5 8ft -8.16 48 2ft -9.89 5.54 R-10 4ft -8.07 51 4ft -10.27 -3.96 R-10 4ft -8.27 51 ntercept -22.065 Intercept -8.72 34 1000(DD) 5417.96 Slope(DD) 3517 urve(DDS) 27.498 Curve(DDS) -20.	nent (/sf) Crawl (/sf	-5.84 7.12 R-0 .00 16 -9.37 1.24 R-11 flr -9.28 1 10.5369 R-19 flr -10.83 -1 11.27 -1.93 R-30 flr -11.68 -2 R-38 flr -11.88 -2 R-49 flr -12.44 -3 D1 4696.30 Slope(DD) 4572 D5 -441.542 Curve(DDS) -13	ion (/sf flr) Window U-value (/sf	F 13.416 Slope(DD) 3656.5 F 6.563 Curve(DDS) 31.71	Base Load = 71.51 ical Load = 18.73 dual Load = 7.86

Cooling Load	Delta Component (MBtu) (KBtu)	Wali R-0 .00 3.16 R-747 1.61 R-1154 1.39 R-1365 1.06 R-1970 .89 R-2777 .67	Slope(DD) 686.23 Curve(DDS) -20.484 Heated Basement (/ft)	R-6 4ft8241 R-5 8ft8398 R-10 4ft8358 R-10 8ft8241 Intercept .000 Slope(DD) -56.17 Curve(DDS) 2.008	Crawl (/sf)	R-0 .00 1.35 R-11 flr .23 1.73 R-19 flr .23 1.74 R-30 flr .23 1.73 R-49 flr .23 1.73 R-49 flr .23 1.73 Intercept 1.701 Slope(DD) 59.52 Curve(DDS) -25.095	Window U-value (/sf) 1-Pane .00 2.58 2-Pane20 1.23 3-Pane26 .78 R-1034 .26	Slope(DD) 109.70 Curve(DDS)451 10.43 MBtu 4.70 MBtu .17 MBtu
ing Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 7.36 R-7 -2.63 2.97 R-11 -3.05 2.27 R-19 -3.43 1.64 R-22 -3.58 1.39 R-30 -3.78 1.30 R-30 -4.01 .67 R-40 -4.01 .67 R-60 -4.08 .55	Slope(DD) 1544.24 Curve(DDS) -51.153 Slab (/ft)	R-0 -1.04 -7.58 R-5 2ft -1.00 -6.24 R-5 4ft97 -5.41 R-10 2ft99 -5.91 R-10 4ft95 -4.74 Intercept95 -4.74 Slope(DD) -987.03 Curve(DDS) 43.241	Unheated Basement (/sf)	R-0 R-11 flr38 .72 R-19 flr25 .93 R-30 flr16 1.07 Intercept 1.47 Slope(DD) -515.04 Curve(DDS) 47.159	Infiltration (/sf flr) VELF Ach .0007(.62) .00 .30 .0005(.45)12 .20 .0003(.27)22 .11	Slope/.001ELF .312 Curve/.001ELF .156 Base Load = Typical Load = Residual Load =
MApartment Prototype Sidi eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-1 R-11 R-13 R-13 R-17 R-19 R-19 R-27 R-27 R-20 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 4962.33 Curve(DDS) 108.735 Heated Basement (/ft)	R-0 R-5 4ft -9.07 77.19 R-5 8ft -9.53 61.86 R-10 4ft -9.45 64.52 R-10 8ft -10.06 44.02 Intercept .0000 Slope(DD) 4455.78 Curve(DDS) -26.413	Crawi (/sf)	R-0 R-11 fir -9.76 2.70 R-19 fir -11.36 .04 R-30 fir -12.32 -1.57 R-49 fir -12.55 -1.93 R-49 fir -13.18 -2.99 Intercept -5.438 Slope(DD) 4935.56 Curve(DDS) -34.022	1-Pane00 119.17 2-Pane -10.42 46.77 3-Pane -12.95 29.20 R-10 -15.93 8.54	Slope(DD) 3546.14 Curve(DDS) 36.659 = 67.06 MBtu = 16.76 MBtu
Denver CO WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 34.06 R-7 -12.72 12.86 R-11 -14.75 9.48 R-19 -16.57 6.44 R-22 -17.19 5.42 R-30 -18.01 4.04 R-38 -18.81 3.21 R-49 -18.89 2.58 R-60 -19.13 2.18	Slope(DD) 5823.89 Curve(DDS) -13.371 Slab (/ft)	R-0 -9.45 64.52 R-5 2ft -10.46 30.86 R-5 4ft -10.73 21.86 R-10 2ft -10.63 25.02 R-10 4ft -10.98 13.52 Intercept -9.325 Slope(DD) 7042.21 Curve(DDS) -29.227	Unheated Basement (/sf)	R-0 R-11 flr -10.30 1.81 R-19 flr -11.34 .07 R-30 flr -12.01 -1.04 Intercept -4.152 Slope(DD) 4285.65 Curve(DDS) -421.444	Infiltration (/sf flr) ELF Ach .0007(.75) .00 12.28 .0005(.55) -5.12 8.01 .0003(.33) -9.51 4.35	Slope/.001ELF 12.250 Curve/.001ELF 7.552 Base Load = Typical Load = Residual Load =

		omponent (KBtu)	(/sf) 5.33 2.14 2.14 1.69 1.69 1.04	1025.52 -6.273 (/ft)		(/sf)	4.26 4.26 4.10 3.96 3.92 3.82 3.597 3.597 68.593	(/sf) 5.20 1.57 .95	82.85 4.319	
		elta Cor (MBtu)		DD) DDS) ement	-2.92 -3.55 -3.63 -3.76 -3.76 -3.93 cept (DD) (DDS)		.000 52 52 75 75 80 80 (000) (000)		(DD) (DDS) 8tu 8tu 8tu	
•	g Load	۵	Wall R-0 R-7 R-11 R-13 R-27 R-27	Slope (Curve (Sandar Sandar Cunter Cunter Cunter Cunter Cunter	_	1 fir 8 fir 8 fir Interc Slope Curve	dow U-v 1-Pane 3-Pane R-10	Slope(Curve) 7.82 MB 2.06 MB 3.99 MB	
	00 1 in			He e	96611	ر ت	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u>.</u>	4.0	
	J	ponent (KBtu)	(/sf) 12.23 4.81 3.62 2.56 2.17 1.33 1.34	374.29 62.411 (/ft)	53.886.7	(/sf)	2.55 3.19 3.38 3.38 3.38 3.555 231.57 6.782	/sf flr) .99 .59 .29	.617 1.136 6 Load Load	
Two		elta Comp (MBtu)	.000 11.43 13.26 14.90 15.50 16.31 16.80 17.24	0) 2 08) -	-6.48 -6.86 -6.64 -6.72 -6.73 -6.73	sement	992 455 64	on (/ .000 61 -1.08	ELF ELF Bas Typica esidua	
eries T		- M - M - M	6:	lope (Durve (D	ft ft cope(D re(D	ted Ba	fir -1. fir -1. fir -1. Intercept Slope(DD) Curve(DDS)	iltrati Ach 7(.55) 5(.39) 3(.23)	pe/.0011 ve/.0018	
S			O & & & & & & & & & & & & & & & & & & &	νο ν	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Unhea	R-8 -11 -369 -369	10000 9000 10000	S C L C L C L C L C L C L C L C L C L C	
e Siding		omponent (KBtu)	12.06 5.35 5.35 3.36 2.76 1.57	916.88 60.594 (/ft)	9.1.0.1.4.8.6	(/sf)	9.02 2.15 1.16 .64 .52 634 557.86	(/sf) 45.97 15.66 9.62 2.51	003.22 27.952	
Prototyp		(MBtu)	.00 -7.54 -8.61 -9.84 -10.45 -11.28	(DD) 19 (DDS) 6 sement	-6.58 -9.88 -10.48 -10.60 -11.21 (DD) (DD)		.000 -10.57 -12.00 -12.90 -13.61 -13.61 000)	. 000 -5.60 -6.72 -8.03	000) 1 000s) tu tu tu	
Story	Load	٥	W W a l l l l l l l l l l l l l l l l l	Slope (Curve (ted Bas	4ft 8ft 8ft Ø 8ft Interc Slope(-	1 flr 9 flr 8 flr 9 flr Slope Curve	indow U-v 1-Pane 2-Pane 3-Pane R-10	Slope(Curve(Curve) 2.20 MB 9.70 MB 3.92 MB	
One (eating			Hea	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	E. J.	**************************************	e i w	# # # # •	
WYEC	Ĩ	omponent (KBtu)	(/sf) 14.89 14.89 3.31 2.54 1.90 1.52 1.52	762.28 42.219 (/ft)	17.49 6.71 5.02 4.84 3.22 .008 867.86	t (/sf)	4.74 1.02 1.02 .57 .57 582 -99.347	(/sf flr 4.62 2.79 1.37	3.019 5.114 5.114 al Load)]
		elta Com (MBtu)	9 .000 .000 .000 .000 .000 .000 .000 .0	(00) 2 (008) -	-10.98 -12.77 -13.05 -13.08 -13.35 -13.35 -10.00)	аѕетел	-6.58 -11.24 -12.31 -13.00 -cept (DD)	ion .000 -2.82 -5.01	.001ELF .001ELF Bas Typics Residus	,
aso TX	,	٥	RR-6 RR-10 RR-11 RR-110 RR-38 RR-38 RR-38	Slope (Curve (Slab	2ft 4ft 0 2ft 0 4ft Interc Slope(eated B	1 fir 9 fir Ø fir Interc Slope(Curve(Infiltrat ELF Ach 0007(.73) 0005(.52) 0003(.31)	lope/.000 urve/.000	
٥.					120	چ	3,1,10	ã ã ã ã L s	- 5	

Cooling Load	Delta Component Delta Component (MBtu) (KBtu)	Ceiling (/sf) Wall (/sf) R-0 .00 12.26 R-0 .00 5.61 R-7 -4.54 4.70 R-7 -1.39 2.69 R-11 -5.26 3.49 R-11 -1.59 2.27 R-19 -5.91 2.41 R-13 -1.84 1.74 R-30 -6.14 2.03 R-19 -1.97 1.48 R-38 -6.62 1.22 R-34 -2.27 .85 R-49 -6.77 .97	Slope(DD) 2200.23 Slope(DD) 1070.42 Curve(DDS) -22.402 Curve(DDS) -5.044 Slab (/ft) Heated Basement (/ft)	2ft -2.5597 R-5 4ft -1.24 31.78 4ft -2.5597 R-5 8ft -1.26 31.28 0 2ft -2.5597 R-10 4ft -1.30 30.28 0 4ft -2.5472 R-10 8ft -1.31 30.03 Intercept	eated Basement (/sf) Crawl (/sf)	1 flr66 3.09 R-11 flr .00 4.19 9 flr56 3.25 R-11 flr .00 4.04 0 flr56 3.35 R-30 flr09 4.04 0 flr50 3.35 R-30 flr17 3.90 R-38 flr19 3.87 R-49 flr24 3.78 Intercept 3.622 Intercept 3.548 Slope(DD) -362.18 Slope(DD) 510.46 Curve(DDS) 23.585 Curve(DDS) -75.317	tration (/sf flr) Window U-value (/ Ach (.54) .00 .85 1-Pane .00 2 (.38)39 .52 2-Pane36 (.23)70 .26 3-Pane35 .	lope/.001ELF
Heating Load	Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu)	Ceiling (/sf) Wall (/sf) R-Ø 15.22 R-Ø 10.94 R-7 -5.86 5.46 R-7 -3.11 4.42 R-11 -6.79 3.90 R-13 -3.55 3.49 R-19 -7.63 2.50 R-13 -3.98 2.58 R-22 -7.87 2.10 R-19 -4.20 2.13 R-38 -8.19 1.24 R-27 -4.48 1.53 R-49 -8.54 .82 R-60 -8.64 .82	Slope(DD) 2191.14 Slope(DD) 1362.39 Curve(DDS) 63.454 Curve(DDS) 125.058 Slab (/ft) Heated Basement (/ft)	R-0 -4.34 12.97 R-0 -3.09 44.22 R-0 R-5 2ft -4.67 4.72 R-5 4ft -3.90 23.97 R-5 R-5 R-5 4ft -4.02 20.97 R-5 R-10 2ft -4.72 3.47 R-10 4ft -4.04 20.47 R-1 R-10 4ft -4.04 20.47 R-1 Intercept .000 Intercept 9.357 R-1 Slope(DD) 582.64 Slope(DD) 743.96 Curve(DDS) 89.073 Curve(DDS) 6.180	Unheated Basement (/sf) Crawl (/sf) Unh	R-0 -3.09 2.95 R-0 .00 8.10 R-0 R-11 fir -4.05 1.35 R-11 fir -3.42 2.40 R-1 R-19 fir -3.90 1.60 R-1 R-30 fir -4.48 .63 R-30 fir -4.15 1.18 R-30 fir -4.48 .63 R-30 fir -4.21 1.08 R-30 fir -4.21 1.08 R-30 fir -4.21 1.08 R-30 fir -4.38 .80 Intercept120 Intercept .159 Slope(DD) 1019.15 Slope(DD) 1234.43 Curve(DDS) -82.083 Curve(DDS) 61.201	Infiltration (/sf flr) Window U-value (/sf) Infiltration (/sf) Window U-value (/sf) ELF (0007(.73) .00 3.32 1-Pane .00 37.71 .0007 .0005(.52) -1.85 1.78 2-Pane -3.54 13.13 .0005 .0005 .0003(.31) -3.13 .71 3-Pane -4.27 8.08 .0003	Slope/.001ELF .583

Mid Town Prototype Siding

WYEC

El Paso TX

ing Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 5.21 R-791 2.34 R-11 -1.04 1.93 R-13 -1.20 1.41 R-19 -1.28 1.15 R-27 -1.37 .87 R-34 -1.43 .70	Slope(DD) 829.76 Curve(DDS) 25.806 eated Basement (/ft)	6 4ft -1.06 28. 5 8ft -1.07 28. 10 4ft -1.09 27. 10 8ft -1.12 26. Intercept 23.5 Slope(DD) 23.5 Curve(DDS) -1.3	-0 .00 3.19 -11 flr .00 3.19 -11 flr .00 3.33 -19 flr .00 3.22 -38 flr .00 3.19 -49 flr05 3.12 Intercept 2.900 Slope(DD) 471.00 Curve(DDS) -80.777		Slope(DD) 100.31 Curve(DDS) 1.784 27.72 MBtu 18.11 MBtu 7.38 MBtu
g Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 12.99 R-7 .4.79 5.00 R-11 .5.56 3.72 R-19 .6.24 2.58 R-22 .6.48 2.18 R-30 .7.00 1.32 R-49 .7.17 1.04 R-60 .7.27 .86	Slope(DD) 2364.95 Curve(DDS) -29.417 Slab (/ft) H	2ft -1.96 .50 R 4ft -1.95 -1.60 R 0 2ft -1.9467 R 0 4ft -1.95 -1.17 R 0 4ft -1.9484 R 1 Letreept .000 5.lope(DD) -462.00 Curve(DDS) 55.842	ted basement (/st) Ced basement (/st) Ced basement (/st) Ced B R Fir42 2.50 R Fir27 2.74 R R Leacept 2.971 R R Lope(DD) -298.53 Urve(DDS) 9.255 Htation (/sffir) W	86 .78 86 .23	Slope/.001ELF .500 Curve/.001ELF .885 Base Load = Typical Load = Residual Load =
MApartment Prototype Sidin Heating Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 R-11 R-13 R-13 R-13 R-13 R-19 R-27 R-29 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 1072.10 Curve(DDS) 170.802 Heated Basement (/ft)	-8 4ft -4.70 17. -5 8ft -4.77 15. -10 4ft -4.77 14. -10 8ft -4.79 14. -10 8ft -4.89 11. Intercept 6.9 Slope(DD) 313. Curve(DDS) 19.9	R-0 .00 8.73 R-11 flr -3.92 2.19 R-19 flr -4.37 1.45 R-30 flr -4.62 1.02 R-38 flr -4.68 .05 R-49 flr -4.85 .65 Intercept .134 Slope(DD) 1027.45 Curve(DDS) 126.429 Window U-value (/sf)	ane .000 35.9 ane -3.57 11.1 ane -4.20 6.7	Slope(DD) 609.56 Curve(DDS) 28.465 26.04 MBtu 8.74 MBtu 5.66 MBtu
El Paso TX WYEC M	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 15.57 R-7 -6.003 5.52 R-11 -6.99 3.91 R-19 -7.86 2.47 R-20 -8.10 2.07 R-30 -8.42 1.20 R-38 -8.62 1.20 R-49 -8.76 .97 R-60 -8.85	Slope(DD) 2138.27 Curve(DDS) 82.161 Slab (/ft)	2ft -5.15 3.08 4ft -5.17 2.2 8 2ft -5.17 2.2 8 4ft -5.18 2.08 4ft -5.21 .8 Curve(DD) -95.11 curve(DDS) 161.24	-3.91 23.91 21.734.734.884.886.6	-1.88 -3.09	Slope/.001ELF604 Curve/.001ELF 7.031 Base Load = Typical Load = Residual Load =

ooling Load		Wall R-Ø R-Ø R-7 -2.91 R-11 -3.32 2.10 R-13 -3.83 1.65 R-19 -4.08 1.43 R-27 -4.88 1.03	Slope(DD) 1023.75 Curve(DDS) -15.484 Heated Basement (/ft)	R-0 -3.19 31.65 R-5 4ft -4.05 26.46 R-5 8ft -4.35 24.66 R-10 4ft -4.39 24.42 R-10 8ft -4.70 22.55 Intercept 17.017 Slope(DD) 549.90 Curve(DDS) -4.600	-0 -11 flr68 5. -19 flr -1.03 4. -30 flr -1.34 4. -38 flr -1.34 4. -49 flr -1.61 4. Intercept 4.1 Slope(DD) 695. Curve(DDS) -83.9.	Window U-value (/sf) 1-Pane .00 9.82 2-Pane -1.12 3.76 3-Pane -1.38 2.34 R-10 -1.69 .67	Slope(DD) 277.31 Curve(DDS) 3.581 51.72 MBtu 27.33 MBtu 4.65 MBtu
ing Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 8.86 R-7 -8.30 3.47 R-11 -9.63 2.61 R-19 -10.82 1.84 R-22 -11.26 1.55 R-30 -11.85 1.17 R-38 -12.21 .93 R-49 -12.60 .75	Slope(DD) 1697.12 Curve(DDS) -34.094 Slab (/ft)	R-Ø -7.71 4.42 R-5 2ft -8.19 1.52 R-5 4ft -8.26 1.10 R-10 2ft -8.30 .86 R-10 4ft -8.35 .56 Intercept .000 Slope(DD) 64.48 Curve(DDS) 27.894 Unheated Basement (/sf)	Intercept 4.21: Slope(DD) -12.4	Infiltration (/sf flr) ELF Ach .0007(.63) .00 5.05 .0005(.45) -2.06 3.71 .0003(.27) -4.25 2.29	Slope/.001ELF 7.954 Curve/.001ELF -1.055 Base Load = Typical Load = Residual Load =
One Story Prototype Sid	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 R-1 R-11 R-13 R-19 R-19 R-19 R-19 R-27 R-19 R-19 R-19 R-27 R-19 R-19 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 2396.43 Curve(DDS) .245 Heated Basement (/ft)	R-0 -8.04 47.77 R-5 4ft -11.23 28.55 R-5 8ft -12.10 23.31 R-10 4ft -12.00 23.91 R-10 8ft -13.17 16.86 Intercept 1.182 Slope(DD) 1545.79 Curve(DDS) -9.541 Craw!	92.1	Window U-value (/sf) 1-Pane .00 56.96 2-Pane -6.30 22.87 3-Pane -7.88 14.31 R-10 -9.74 4.25	Slope(DD) 1773.22 Curve(DDS) 14.554 67.92 MBtu 24.39 MBtu .28 MBtu
Fort Worth TX WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 14.43 R-7 -13.46 5.69 R-11 -15.61 4.30 R-19 -17.54 3.04 R-22 -18.27 2.57 R-36 -19.83 1.56 R-49 -20.32 1.24 R-60 -20.64 1.03	Slope(DD) 2824.03 Curve(DDS) -65.673 Slab (/ft)	R-0 -11.49 26.98 R-5 2ft -13.74 13.43 R-5 4ft -14.27 10.24 R-10 2ft -14.11 11.20 R-10 4ft -14.77 7.22 Intercept .000 Slope(DD) 1985.32 Curve(DDS) 31.749 Unheated Basement (/sf)	1.80.4. 80.08	Infiltration (/sf flr) ELF Ach .0007(.71) .00 6.99 .0005(.53) -3.50 4.72 .0003(.32) -6.66 2.66	Slope/.001ELF 8.052 Curve/.001ELF 2.760 Base Load = Typical Load = Residual Load =

		,								
		omponent (KBtu)	(/sf) 4.27 1.78 1.18 1.12 .67	6Ø6.92 34.832 (/ft)	45.63 39.63 38.63 38.13 36.13 343.006 696	(/st)	5.21 5.13 4.91 4.69 4.69 4.58 4.257 685.03	4.76 4.76 .73 .38	-32.6Ø 8.064	
	ooling Load	Delta Con (MBtu)	Wa	Slope(DD) Curve(DDS) Heated Basement	R-0 -1.30 R-5 4ft -1.54 R-5 8ft -1.58 R-10 4ft -1.60 R-10 8ft -1.66 Intercept Slope(DD) Curve(DDS)	Crawl	R-0 R-11 flr05 R-19 flr18 R-30 flr29 R-49 flr31 R-49 flr31 R-49 flr31 Curve(DD)	Window U-value 1-Pane .00 2-Pane58 3-Pane63 R-1069	Slope(DD) Curve(DDS) 34.23 MBtu 24.08 MBtu	0.02 MBt
Series Two	Coo	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 8.66 R-7 -3.19 3.34 R-11 -3.70 2.49 R-19 -4.16 1.72 R-22 -4.32 1.46 R-30 -4.53 1.10 R-38 -4.66 .89 R-49 -4.78 .70 R-60 -4.85 .57	Slope(DD) 1582.42 Curve(DDS) -20.652 Slab (/ft)	R-0 -3.06 1.63 R-5 2ft -3.19 -1.62 R-5 4ft -3.18 -1.37 R-10 2ft -3.20 -1.87 R-10 4ft -3.19 -1.62 Intercept .000 Slope(DD) -705.14 Curve(DDS) 73.738	Unheated Basement (/sf)	R-0 R-11 flr74 3.98 R-19 flr65 4.13 R-3Ø flr59 4.23 Intercept 4.455 Slope(DD) -294.41 Curve(DDS) 3.691	Infiltration (/sf flr) ELF Ach .0007(.63) .00 4.67 .0005(.45) -1.44 3.47 .0003(.27) -3.01 2.17	Slope/.001ELF 7.625 Curve/.001ELF -1.354 Base Load = Typical Load =	Sidual Load
Mid Town Prototype Siding	eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-0 R-7 -3.33 R-11 -3.80 4.17 R-13 -4.29 3.13 R-19 -4.89 1.89 R-34 -5.10 1.44	Slope(DD) 1744.31 Curve(DDS) 95.568 Heated Basement (/ft)	R-Ø -3.87 46.75 R-5 4ft -4.79 23.75 R-5 8ft -4.98 19.00 R-10 4ft -4.96 19.50 R-10 8ft -5.19 13.75 Intercept 2.817 Slope(DD) 969.51 Curve(DDS) 3.203	Crawl (/sf)	R-0 R-11 flr -4.21 2.55 R-19 flr -4.84 1.50 R-30 flr -5.16 .97 R-38 flr -5.23 .85 R-49 flr -5.44 .50 Intercept -374 Slope(DD) 1645.63 Curve(DDS) 57.145) Window U-value (/sf) 1-Pane .00 46.58 2-Pane -4.51 15.26 3-Pane -5.36 9.33 R-10 -6.37 2.35	Slope(DD) 923.23 Curve(DDS) 31.868 = 31.33 MBtu	2.78 MB
Fort Worth TX WYEC	Đ.	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø .000 15.19 R-7 -5.75 5.61 R-11 -6.67 4.08 R-19 -7.49 2.70 R-22 -7.75 2.27 R-23 -8.31 1.34 R-49 -8.47 1.07 R-60 -8.57 .90	Slope(DD) 2411.07 Curve(DDS) 25.415 Slab (/ft)	R-Ø -4.92 20.50 R-5 2ft -5.39 8.75 R-5 4ft -5.49 6.25 R-10 2ft -5.46 7.00 R-10 4ft -5.57 4.25 Intercept .000 Slope(DD) 984.03 Curve(DDS) 69.823	Unheated Basement (/sf)	R-0 -3.87 3.12 R-11 flr -4.99 1.25 R-19 flr -5.31 .72 R-30 flr -5.51 .38 Intercept531 Slope(DD) 1243.53 Curve(DDS) -103.791	Infiltration (/sf flr.) ELF Ach .0007(.74) .00 5.32 .0005(.52) -2.50 3.24 .0003(.31) -4.46 1.61	3.666 5.625 . 625 . Coad	9

	י ט	2 4 1 1 1 1 1	Slope(DD) 677.12 Curve(DDS) 28.602 Heated Basement (/ft)	R-6 -1.19 45.81 R-5 4ft -1.44 37.65 R-5 8ft -1.50 35.31 R-10 4ft -1.52 34.98 R-10 8ft -1.57 33.15 Intercept 27.735 Slope(DD) 492.54 Curve(DDS) -1.008	Crawl (/sf)	R-0 .00 4.27 R-11 flr .07 4.39 R-19 flr06 4.18 R-30 flr16 4.01 R-49 flr18 3.97 R-49 flr28 3.86 Intercept 3.540 Slope(DD) 688.99 Curve(DDS) -106.426	Window U-value (/sf) 1-Pane .00 5.30 2-Pane63 .89 3-Pane69 .48 R-107601	Slope(DD) -24.49 Curve(DDS) 8.535 32.41 MBtu 22.98 MBtu 9.25 MBtu
ing Series Two	Delta Component (MBtu)	Ceiling (/sf) R-0 .00 8.82 R-7 -3.34 3.26 R-11 -3.87 2.37 R-19 -4.35 1.57 R-22 -4.50 1.32 R-30 -4.70 .99 R-38 -4.82 .79 R-49 -4.92 .62 R-60 -4.98 .52	Slope(DD) 1402:43 Curve(DDS) 14.379 Slab (/ft)	R-0 -2.60 -1.35 R-5 2ft -2.68 -3.85 R-6 4ft -2.67 -3.52 R-10 2ft -2.70 -4.52 R-10 4ft -2.66 -3.19 Intercept .000 Slope(DD) -1289.36 Curve(DDS) 102.082	Unheated Basement (/sf)	R-0 R-11 flr67 3.17 R-19 flr54 3.37 R-3Ø flr47 3.5Ø Intercept 3.837 Slope(DD) -452.73 Curve(DDS) 29.483	Infiltration (/sf flr) ELF Ach .0007(.63) .00 4.64 .0005(.45) -1.47 3.42 .0003(.27) -3.03 2.11	Slope/.001ELF 7.354 Curve/.001ELF -1.042 Base Load = Typical Load = Residual Load =
MApartment Prototype Sid ating Load)	Wall R-a R-7 R-7 R-17 R-11 R-13 R-13 R-13 R-13 R-13 R-19 R-19 R-19 R-27 R-3	Slope(DD) 1616.69 Curve(DDS) 119.397 Heated Basement (/ft)	R-6 R-5 4ft -5.40 21.00 R-5 8ft -5.56 15.67 R-10 4ft -5.54 16.17 R-10 8ft -5.73 9.84 Intercept -1.695 Slope(DD) 986.53 Curve(DDS) 6.687	Crawl (/sf)	R-0 .00 10.04 R-11 flr -4.47 2.59 R-19 flr -5.11 1.53 R-38 flr -5.53 .95 R-49 flr -5.76 .45 Intercept -4.426 Slope(DD) 1687.19 Curva(DDS) 69.095	Window U-value (/sf) 1-Pane .00 45.38 2-Pane -4.53 13.92 3-Pane -5.32 8.43 R-10 -6.25 1.97	Slope(DD) 753.69 Curve(DDS) 36.559 29.74 MBtu 11.20 MBtu 3.10 MBtu
Fort Worth TX WYEC P	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 15.49 R-7 -5.91 5.63 R-11 -6.86 4.06 R-19 -7.71 2.64 R-22 -7.96 2.21 R-38 -8.52 1.29 R-49 -8.67 1.04 R-60 -8.76 .89	Slope(DD) 2328.59 Curve(DDS) 47.814 Slab (/ft)	R-0 -5.36 22.17 R-5 2ft -5.75 9.34 R-5 4ft -5.83 6.67 R-10 2ft -5.80 7.50 R-10 4ft -5.89 4.50 Intercept .000 Slope(DD) 1029.58 Curve(DDS) 78.501	Unheated Basement (/sf)	R-0 R-11 flr -5.48 .92 R-19 fir -5.73 .49 R-30 flr -5.90 .21 Intercept540 Slope(DD) 1019.15 Curve(DDS) -85.977	Infiltration (/sf flr) ELF Ach .0007(.74) .00 5.10 .0005(.52) -2.51 3.01 .0003(.32) -4.40 1.43	Slope/.001ELF 2.875 Curve/.001ELF 6.302 Base Load = Typical Load = Residual Load =

	ponent (KBtu)	(/sf) 6.56 3.35 3.35 2.23 1.91 1.11	430.21 39.252 (/ft)	19.40 16.75 16.33 15.85 15.16 13.16 191.43	(/sf)	4.49 4.12 3.91 3.75 3.71 3.324 802.26	(/sf) 9.26 4.45 2.83 .93	400.21 -1.867
	elta Com (MBtu)	-3.68 -4.12 -5.22 -5.78 -6.78	(DD) 1 (DDS) -	-3.69 -4.13 -4.28 -4.28 -4.39 (DD) (DDS)		. 68 68 89 - 1 . 13 - 1 . 13 . copt (00)	. 000 89 -1.19	(DD) (DDS) Btu Btu Btu
ooling Load		W 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Slope Curve eated Ba	-6 4ft -5 4ft -16 8ft -10 4ft -10 8ft Slope Curve	- Mer		indow U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 47.03 M 19.31 M
- 000 000	Component (KBtu)	(/sf) 13.17 5.28 4.02 2.88 2.88 1.86 1.51 1.51	02.40 1.128 (/ft) H	-1.02 R -1.08 R -1.14 R -1.14 R -78 R -78 S -668	(/sf) C	2.03 R 2.03 R 3.06 R 3.15 R 3.351 57.81	sf flr) W 1.47 1.03	1.981 .162 . Load = Load = Load =
o *	elta Comp (MBtu) (.00 -12.16 -14.10 -15.84 -16.51 -17.96 -17.96 -18.46	(00) 27 (00S) -8	-7.08 -7.09 -7.06 -7.10 -7.10 -7.04 (DD) -2 (DDS) 1	Basement	-3.69 -2.19 -2.06 -2.06 (DD) (DDS)	tion (/ .000 67 1.32	MIELF MIELF Base Typical Residual
Series	۵	C	Slope Curve Slab	-0 -5 2ft -10 2ft 10 4ft Slope	nheated E	-0 -11 fr -19 fr -30 fr Inter Slope Curve	Infiltrat ELF Ach 0007(.45) 0005(.32) 0003(.19)	Slope/.Øi
5u -				~ ~ ~ ~ ~)	~ ~ ~ ~	• • •	
pe Sid	ponent (KBtu)	(/sf) 14.3f) 6.833 7.75 7.74 7.76 2.76 2.13	710.38 -8.619 (/ft)	54.85 34.49 28.76 29.67 21.35 3.296 752.24	(/sf)	10.17 2.07 .80 .039 .04 .054 .1.669 2203.92 20.288	(/sf) 57.86 24.96 15.74 4.89	4.715
Prototype	ita Comp (MBtu) (.00 -8.44 -9.64 -11.11 -11.84 -13.00	(DD) 2 (DDS) sement	-6.55 -9.93 -10.88 -10.73 -12.11 cept (DD) 1		.00 -12.46 -14.42 -15.77 -15.77 -16.49 (DD) 2	.000 -6.08 -7.78 -9.79	(DD) 2 (DDS) 2 (Btu (Btu
Story) 0	¥ R R R - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Slope Curve ated Bas	SS 8ft 10 4ft 10 8ft Interc	- * e	08 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ndow U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 72.63 Mi 25.92 MI
One S			Ţ	~~~~~	Ç	~~~~~~ 	() W:	11 11 11
TMY	omponent (KBtu)	(/sf) 17.20 6.76 5.10 3.64 3.04 2.30 1.85 1.85	1333.49 72.860 (/ft)	32.74 17.26 13.46 14.67 9.61 .000 2665.37	t (/sf)	5.91 1.84 .84 .17 -1.598 2380.12	sf fl 6.37 4.21 2.32	6.721 3.409 se Load al Load
	Delta Com (MBtu)	ng .00 -16.08 -18.64 -21.91 -21.91 -22.96 -23.65 -24.24	(S00) (00)	-10.22 -12.79 -13.42 -13.22 -14.06 (DD) (DDS)	Basement	36 39 39	8 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.001ELF .001ELF Bar Typics Residus
Fresno CA	۵	C. R 4 C. 1 C.	Slope Curve	R-6 R-5 2ft R-5 2ft R-10 2ft R-10 4ft Slope Curve	Unheated	R-0 -6. R-11 flr -12. R-19 flr -14. R-30 flr -15. Intercept Slope(DD)	InfiltrateLF Ach. 0007(.58)	Slope/.0 Curve/.0

oo lina Load) 	Wall (/sf) R-0 .00 7.10 R-7 -1.71 3.52 R-11 -1.95 3.01 R-13 -2.28 2.31 R-19 -2.45 1.96 R-27 -2.69 1.45 R-34 -2.84 1.14	Slope(DD) 1450.82 Curve(DDS) -24.262 Heated Basement (/ft)	R-Ø -1.33 33.82 R-5 4ft -1.47 30.32 R-5 8ft -1.52 29.07 R-1Ø 4ft -1.54 28.57 R-1Ø 8ft -1.54 28.57 Intercept 26.937 Slope(DD) 109.09 Curve(DDS) 1.456	Crawi (/sf)	R-11 flr16 4.20 R-19 flr28 4.00 R-30 flr35 3.88 R-38 flr37 3.85 R-49 flr42 3.77 Slope(DD) 521.15 Curve(DDS) -65.130	Window U-value (/sf) 1-Pane .00 6.79 2-Pane .57 2.83 3-Pane72 1.78 R-1090 .54	Slope(DD) 227.87 Curve(DDS) 1.114	29.29 MBtu 17.69 MBtu 5.53 MBtu
Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 -4.93 R-1 R-11 -5.71 4.12 R-19 -6.42 2.94 R-22 -6.69 2.49 R-30 -7.65 1.89 R-49 -7.65 R-49 -7.59 R-60 -7.59	Slope(DD) 2744.43 Curve(DDS) -74.812 Slab (/ft)	R-0 -2.80 -2.93 R-5 2ft -2.77 -2.18 R-5 4ft -2.75 -1.68 R-10 2ft -2.77 -2.18 R-10 4ft -2.74 -1.43 Intercept .000 Slope(DD) -461.42 Curve(DDS) 18.109	Unheated Basement (/sf) (R-0 R-11 flr87 3.02 R-19 flr79 3.15 R-30 flr74 3.24 F Intercept 3.440 Slope(DD) -262.03 Curve(DDS) 6.006	Infiltration (/sf flr) W ELF Ach .0007(.49) .00 1.23 .0005(.35)46 .85 .0003(.21)89 .49	Slope/.001ELF 1.542 Curve/.001ELF .313	Base Load = Typical Load = Residual Load =
Mid Town Prototype Siding ating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .000 13.57 R-7 -3.67 5.88 R-11 -4.19 4.78 R-13 -4.75 3.60 R-19 -5.03 3.02 R-27 -5.43 2.18 R-34 -5.67 1.67	Slope(DD) 2039.96 Curve(DDS) 89.953 Heated Basement (/ft)	R-0 -3.34 55.40 R-5 4ft -4.34 30.40 R-5 8ft -4.58 24.40 R-10 4ft -4.55 25.15 R-10 8ft -4.82 18.40 Intercept 4.699 Slope(DD) 1201.77 Curve(DDS) .908	Crawl (/sf)	R-0 R-11 flr -4.30 2.09 R-19 flr -4.95 1.01 R-30 flr -5.28 .45 R-38 flr -5.36 .33 R-49 flr -5.5804 Intercept953 Slope(DD) 1729.85 Curve(DDS) 51.079	Window U-value (/sf) 1-Pane .00 45.56 2-Pane -4.29 15.77 3-Pane -5.16 9.70 R-10 -6.19 2.57	Slope(Curve(32.49 MBtu 12.03 MBtu 3.07 MBtu
Fresno CA TMY	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 17.99 R-7 -6.78 6.68 R-11 -7.87 4.88 R-19 -8.84 3.25 R-22 -9.15 2.74 R-30 -9.57 2.04 R-38 -9.82 1.62 R-49 -10.01 1.30 R-60 -10.14 1.09	Slope(DD) 2913.86 Curve(DDS) 20.244 Slab (/ft)	R-Ø R-5 2ft -5.11 11.15 R-5 4ft -5.22 8.40 R-10 2ft -5.19 9.15 R-10 4ft -5.33 5.65 Intercept .000 Slope(DD) 1375.51 Curve(DDS) 56.810	Unheated Basement (/sf)	R-0 R-11 flr -4.76 1.33 R-19 flr -5.18 .63 R-3Ø flr -5.45 .18 Intercept -1.046 Slope(DD) 1668.03 Curve(DDS) -145.055	Infiltration (/sf flr) ELF Ach .0007(.58) .00 4.83 .0005(.44) -2.32 2.90 .0003(.27) -4.11 1.41	3.04	Base Load = Typical Load = Residual Load =

		omponent (KBtu)	(/sf) 6.82 3.33 2.83	400	0 <i>©</i>	1353.02	(/ft)	26.77 23.27 22.77 22.27 21.61 19.733 165.60	(/sf)		· w	(/sf) 8.32 3.74 2.37 .75	319.95 180	
		elta Com (MBtu)	.000	400	. 8.	(00) 1 (00s) -	sement	-1.24 -1.34 -1.35 -1.37 -1.39 (DD) (DD)			- (\$00) (00)		(800) (800)	Otu Otu Otu
	ng Load	ď	Wa R-0 R-7	R-13	1 10	Slope	ated Ba	6 4ft 5 8ft 10 4ft Interc Slope	_ *e	0880H	Curve	1-Pane 2-Pane 3-Pane R-10	Slope	26.44 ME 15.71 ME 3.78 ME
	Cooling						T	~ ~ ~ ~ ~ ~	Ş	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		. <u>-</u> ≽		B H B
	Ū	omponent (KBtu)	(/sf) 14.57 5.79 4.39	4.66	9000	917.57	(/ft)	-3.73 -3.89 -3.23 -3.73 -2.73 .000 941.30	(/sf)		286.41 12.075	(/sf flr) 1.23 1.85 .50	1.604	peol –
Two		elta Com (MBtu)	6.2.6	6.8	-7.77 -7.98 -7.98 -8.11	(00) 2 (00s) -		-2.15 -2.16 -2.14 -2.15 -2.13 (00) (00)	asement	. 24 . 73 . 68	- (sgg)		1ELF 1ELF	Bas Typica Residua
Series		9 0	Ceilin R-0 R-7	-22	R R R R R R R R R R R R R R R R R R R	Slope(Curve(Slab	2ft 4ft Ø 2ft Interc Slope Curve	eated B	1 for Inter	lope Lrve	Infiltrat ELF Ach 0007(.45) 0005(.32) 0003(.19)	lope/.001 urve/.001	
. gu:								5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	L'S	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		EE		
P!S														
		ponent (KBtu)	(/sf) 13.30 5.50	41.0	y. ∡.	768.52 31.163	(/ft)	57.78 27.78 20.95 21.61 13.61 -1.797 342.36	(/sf)	924	637.9 86.16	(/sf) 43.59 13.97 8.51 2.09	815.74 31.639	
		a Component Itu) (KBtu)	(/sf .00 13.3 2.47 5.5 83 4.3	3.18 3.2	3.75 1.4	1768.5 131.16	t (/ft	.16 57.7 .08 27.4 .27 20.9 .25 21.6 .49 13.6 .179	St	5.25 5.25 5.58 5.58 5.66 5.88 5.88 5.88) 1637.9 S) 86.16	ue (/sf .øø 43.5 4.26 13.9 5.ø5 8.5 5.97 2.0	815.7 31.63	777
Prototype	þec	Delta Component (MBtu) (KBtu)	/sf .00 13.3 -2.47 5.5	3 -3.18 3.2	-3.75 1.4 -3.75 1.4	pe(DD) 1768.5 ve(DDS) 131.16	//t	t -5.08 27.4 t -5.08 27.4 t -5.27 20.9 t -5.25 21.6 t -5.49 13.6 ercept -1.79 ve(DD) 1342.3	St	-4.60 9.8 -5.25 1.0 -5.58 .5 -5.66 .4	(DD) 1637.9 (DDS) 86.16	U-value (/sf ane .00 43.5 ane -4.26 13.9 ane -5.05 8.5	pe(DD) 815.7 ve(DDS) 31.63	a MBtu a MBtu 2 MBtu
Prototype	ng Loa	elta ((MBtu)	(/sf .00 13.3 -2.47 5.5	-13 -3.18 3.2 -19 -3.36 2.7	-21 -5.00 1.9 -34 -3.75 1.4	e(DD) 1768.5 e(DDS) 131.16	ated Basement (/ft	6 4ft -5.08 27.4 5 8ft -5.27 20.9 10 4ft -5.25 21.6 10 8ft -5.45 13.6 10 10 13.6 10 10 13.6 10 10 13.6 10 10 13.6	St	1 flr -4.60 2.1 9 flr -5.25 1.0 7 flr -5.58 .5 8 flr -5.66 .4 9 flr -5.66 .4	lope(DD) 1637.9 urve(DDS) 86.16	indow U-value (/sf 1-Pane .00 43.5 2-Pane -4.26 13.9 3-Pane -5.05 8.5 R-10 -5.97 2.0	e(DD) 815.7 e(DDS) 31.63	
rototype	eating Loa	Delta ((MBtu)	Wall (/sf R-0 .00 13.3 R-7 -2.47 5.5 R-11 -2 83 4 3.5	R-13 -3.18 3.2 R-19 -3.36 2.7	R-34 -3.75 1.4	Slope(DD) 1768.5 Curve(DDS) 131.16	Heated Basement (/ft	R-0 R-5 4ft -5.08 27.4 R-5 8ft -5.27 20.9 R-10 4ft -5.25 21.6 R-10 8ft -5.49 13.6 Intercept -1.79 Slope(DD) 1342.3 Curve(DDS) 2.75	Crawl (/sf	R-0 R-11 flr -4.60 2.1 R-19 flr -5.25 1.0 R-30 flr -5.58 .5 R-38 flr -5.66 .4 R-49 flr -5.88 .0	Slope(DD) 1637.9 Curve(DDS) 86.16	r) Window U-value (/sf 1-Pane .00 43.5 2-Pane -4.26 13.9 3-Pane -5.05 8.5 R-10 -5.97 2.0	Slope(DD) 815.7 Curve(DDS) 31.63	= 30.60 MB = 10.80 MB = 3.52 MB
Prototype	ating Loa	ent Delta (tu) (MBtu)	sf) Wall (/sf .37 R-0 .00 13.3 .66 R-7 -2.47 5.5	.11 R-13 -3.18 3.2 .60 R-19 -3.36 2.7	-21 -5.00 1.9 -34 -3.75 1.4	728.53 Slope(DD) 1768.5 62.511 Curve(DDS) 131.16	eated Basement (/ft	28.45 R-0 -4.16 57.7 12.95 R-5 4ft -5.08 27.4 9.61 R-10 4ft -5.27 20.9 10.61 R-10 4ft -5.25 21.6 6.61 R-10 4ft -5.49 13.6 000 Slope(DD) 1342.3 61.106 Curve(DDS) 2.75	(/sf) Crawl (/sf	2.89 R-0 .98 R-11 flr -4.60 2.1 .41 R-19 flr -5.25 1.0 .05 R-30 flr -5.58 .5 R-38 flr -5.66 .4 R-49 flr -5.88 .0	355.80 Slope(DD) 1637.9 18.553 Curve(DDS) 86.16) Window U-value (/sf 1-Pane .00 43.5 2-Pane -4.26 13.9 3-Pane -5.05 8.5 R-10 -5.97 2.0	lope(DD) 815.7 urve(DDS) 31.63	se Load = 30.60 MB al Load = 10.80 MB al Load = 3.52 MB
MApartment Prototype	eating Loa	a Component Delta (tu) (KBtu) (MBtu)	(/sf) Wall (/sf) .00 18.37 R-0 .00 13.3 7.03 6.66 R-7 -2.47 5.5	9.16 3.11 R-13 -3.18 3.2 9.46 2.60 R-19 -3.36 2.7	.92 K-2/ -3.76 1.3 .51 R-34 -3.75 1.4 .22	2728.53 Slope(DD) 1768.5 Curve(DDS) 131.16	Heated Basement (/ft	.65 28.45 R-0 -4.16 57.7 .51 12.95 R-5 4ft -5.08 27.4 .61 9.61 R-10 4ft -5.27 20.9 .58 10.61 R-10 4ft -5.49 13.6 .70 .0000 Intercept -1.79 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$100	sement (/sf) Crawl (/sf	16 2.89 R-0 .00 9.8 31 .98 R-11 flr -4.60 2.1 65 .41 R-19 flr -5.25 1.0 87 .05 R-30 flr -5.58 .5 R-38 flr -5.66 .4 R-49 flr -5.88 .0	1355.80 Slope(DD) 1637.9 -118.553 Curve(DDS) 86.16	on (/sf flr) Window U-value (/sf .00 4.51 1-Pane .00 43.5 -2.31 2.59 2-Pane -4.26 13.9 -4.01 1.17 3-Pane -5.05 8.5 R-10 -5.97 2.0	ELF 2.000 Slope(DD) 815.7 ELF 6.354 Curve(DDS) 31.63	Base Load = 30.60 MB oical Load = 10.80 MB idual Load = 3.52 MB
MApartment Prototype	eating Loa	Component Delta (u) (KBtu) (MBtu)	(/sf) Wall (/sf) Wall (/sf) Wall (/sf) (/sf)	2 -9.16 3.11 R-13 -3.18 3.2 -9.46 2.60 R-19 -3.36 2.7	9.87 1.92 K-27 -3.06 1.9 0.12 1.51 R-34 -3.75 1.4 0.29 1.22 0.40 1.04	728.53 Slope(DD) 1768.5 62.511 Curve(DDS) 131.16	Heated Basement (/ft	5 28.45 R-0 -4.16 57.7 1 12.95 R-5 4ft -5.08 27.4 1 9.61 R-10 4ft -5.27 20.9 8 10.61 R-10 4ft -5.25 21.6 6 6.61 R-10 8ft -5.49 13.6 1617.42 Slope(DD) 1342.3 61.106 Curve(DDS) 2.75	ement (/sf) Crawl (/sf	16 2.89 R-0 .00 9.8 31 .98 R-11 flr -4.60 2.1 65 .41 R-19 flr -5.25 1.0 87 .05 R-30 flr -5.58 .5 R-38 flr -5.66 .4 R-49 flr -5.88 .0	1355.80 Slope(DD) 1637.9 -118.553 Curve(DDS) 86.16	n (/sf flr) Window U-value (/sf .00 4.51 1-Pane .00 43.5 2.31 2.59 2-Pane -4.26 13.9 4.01 1.17 3-Pane -5.05 8.5 R-10 -5.97 2.0	2.000 Slope(DD) 815.7 6.354 Curve(DDS) 31.63	Base Load = 30.60 MB ical Load = 10.80 MB dual Load = 3.52 MB

	**	component (KBtu)	200	ο. 4.		310.67 -7.708	(/ft)		(/sf)	11.65	1.662 5.55 13.815	1.34 1.34 .85 .55	90.00 -1.487	
	Coofing Load	Delta Co (MBtu)	6.8	113	-27 -1.2 -34 -1.3	Slope(DD) Curve(DDS)	Heated Basement	R-0 R-5 4ft -2.10 R-5 8ft -2.08 R-10 4ft -2.14 R-10 8ft -2.14 Intercept Slope(DD) Curve(DDS)	Crawl	R-0 R-11 f r . 47 R-19 f r . 50 R-38 f r . 51 R-38 f r . 51	Intercept Slope(DD) Curve(DDS)	Window U-value 1-Pane .000 2-Pane09 3-Pane15 R-1021	Stope(DD) Curve(DDS)	10.22 MBtu 1.70 MBtu -2.07 MBtu
	ŭ	Component (KBtu)	(/sf) 3.70 1.45		24.00	717.58 -15.876	(/ft)	-2.75 -1.91 -1.49 -1.73 -1.12 .242 -2.42 626.66	. (/sf)	.10 .80 1.00 1.13	1.482 477.14 40.459	(/sf flr) .18 .13	.260	E Load
ing Series Two		Delta Cor (MBtu)	eiling -0 -7 -3.4	-11 -4.0 -19 -4.5 -22 -4.6	R-38 -4.93 R-38 -5.08 R-49 -5.21 R-60 -5.29	Slope(DD) Curve(DDS) -	Slab	R-Ø -2.50 R-5 2ft -2.36 R-5 4ft -2.29 R-1Ø 2ft -2.23 R-1Ø 4ft -2.23 Slope(DD) - Curve(DDS)	Unheated Basement	R-0 -1.89 R-11 flr81 R-19 flr50 R-30 flr30	Intercept Slope(DD) - Curve(DDS)	Infiltration (ELF Ach .0007(.58) .0007(.58) .0006.008(.41)08	Slope/.001ELF Curve/.001ELF	Baso Typica Residua
s Story Prototype Sid	ating Load	Delta Component (MBtu) (KBtu)	(/ .00 41 -23.66 20	-11 -27.03 17.5 -13 -31.20 13.8 -19 -33.26 12.0	-27 -37.03 8.6 -34 -39.34 6.5	Slope(DD) 8628.80 Curve(DDS) -166.309	Heated Basement (/ft)	R-0 R-5 4ft -19.45 93.48 R-5 8ft -22.27 76.49 R-10 4ft -21.28 82.46 R-10 8ft -25.61 56.37 Intercept .0000 Slope(DD) 7255.03 Curve(DDS) -97.914	Crawl (/sf)	R-0 R-11 f r -36.96 -1.29 R-19 f r -43.18 -5.33 R-30 f r -47.10 -7.88 R-38 f r -48.00 -8.46 R-49 f r -50.58 -10.14	Intercept -13. Slope(DD) 7822 Curve(DDS) -131.	Window U-value (/sf) 1-Pane .00 202.24 2-Pane -19.71 95.58 3-Pane -26.14 60.77 R-10 -33.71 19.82	Slope(DD) 8502.72 Curve(DDS) -31.905	224.05 MBtu 80.52 MBtu 13.26 MBtu
Great Falls MT WYEC	H	Delta Component (MBtu) (KBtu)	eiling (/sf -0 .00 43.2 -7 -39.89 17.3	-11 -40.20 13.1 -19 -51.98 9.4 -22 -54.21 8.0	R-30 -57.19 6.10 R-38 -58.99 4.93 R-49 -60.61 3.88 R-60 -61.65 3.20	lope(DD) 88 urve(DDS) -26	Slab (/ft)	R-6 -24.94 60.41 R-5 2ft -31.48 21.01 R-5 4ft -33.48 8.96 R-10 2ft -32.71 13.60 R-10 4ft -35.52 -3.33 Intercept -40.277 Slope(DD) 16142.20 Curve(DDS) -548.839	Unheated Basement (/sf)	R-11 flr -33.50 .95 R-19 flr -39.57 -2.99 R-30 flr -43.47 -5.52	Intercept -12.387 Slope(DD) 9359.54 Curve(DDS) -804.004	Infiltration (/sf flr) ELF Ach .0007(.98) .00 27.12 .0005(.72)-12.12 19.25 .0003(.43)-24.09 11.48	Slope/.001ELF 37.890 Curve/.001ELF 1.218	Base Load = Typical Load = Residual Load =

	Component (KBtu)	(/sf) 1.76 1.95 1.95 1.95 1.94 1.94 1.94	422.36 -17.790 (/ft)	-1.58 -1.08		9.68	8.51.1.0	18.44 263
ooling Load	Delta Co (MBtu)	Wall R-0 R-7 R-1139 R-1353 R-1953 R-2764 R-3468	Slope(DD) Curve(DDS) Heated Basement	R-071 R-5 4ft74 R-5 8ft72 R-10 4ft75 R-10 8ft75 Intercept Slope(DD) Slope(DD)	R-0 R-11 flr .23 R-19 flr .26 R-38 flr .26 R-38 flr .26	Intercept Slope(DD) Curve(DDS)	#Indow U-va 1-Pane 2-Pane 3-Pane R-10	Slope(DD) Curve(DDS) 6.98 MBtu 3.40 MBtu 1.21 MBtu
g Series Two	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 4.05 R-7 -1.45 1.63 R-11 -1.68 1.24 R-19 -1.89 .90 R-22 -1.97 .76 R-38 -2.08 .59 R-49 -2.21 .37 R-60 -2.25 .30	Slope(DD) 844.38 Curve(DDS) -27.311 Slab (/ft)	R-0 -1.01 -8.33 R-5 2ft95 -6.83 R-5 4ft92 -6.08 R-10 2ft94 -6.58 R-10 4ft91 -5.83 Intercept -4.271 Slope(DD) -664.20 Curve(DDS) 23.581	Unheated Basement (/sf) R-8 - 7106 R-11 flr30 .63 R-19 flr19 .81 R-30 flr12 .93	1.241 lope(DD) -424.40 lrve(DDS) 33.457	Infiltration (/sr Tir) ELF Ach .0007(.58) .00 .07 .0005(.41)06 .02 .0003(.25)0901	Slope/.001ELF125 Curve/.001ELF .313 Base Load = Typical Load = Residual Load =
Mid Town Prototype Sidin eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-0 R-7 -10.17 R-7 -10.17 19.36 R-11 -11.62 R-13 -13.31 R-19 -14.15 11.01 R-27 -15.62 R-34 -16.53 6.01	Slope(DD) 7769.70 Curve(DDS) -37.520 Heated Basement (/ft)	0 4ft -10.81 9 5 8ft -11.55 10 4ft -11.37 8 10 8ft -12.45 5 Intercept 724 Slope(DD) 724	Crawl R-0 R-11 fir -13.51 2.10 R-19 fir -15.78 -1.68 R-30 fir -17.20 -4.05 R-30 fir -17.50 -4.05 R-30 fir -17.50 -4.05	Intercept -9 Slope(DD) 726 Curve(DDS) -112	r) Window U-value (/sf) 1-Pane .00 184.69 2-Pane -14.67 82.81 3-Pane -19.05 52.40 R-10 -24.20 16.63	Slope(DD) 7079.01 Curve(DDS) -3.154 = 109.31 MBtu = 36.24 MBtu
Great Falls MT WYEC	Delta Component (MBtu)	(/ 8	Ope (DD) 8563.4 urve (DDS) -155.39	2ft -13.39 59. 4ft -14.43 8. 4ft -14.43 8. 2ft -14.26 12. 4ft -14.88 -2. ntercept -35.6 ilope(DD) 14116. urve(DDS) -392.2		Intercept -7.544 Slope(DD) 7254.65 Curve(DDS) -724.787	Infiltration (/sf flr ELF Ach .00007(***) .00 24.87 .0005(.74) -9.12 17.07 .0003(.44)-17.71 9.91	Slope/.001ELF 31.374 Curve/.001ELF 5.521 Base Load Typical Load Residual Load

	Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 . 00 1.69 R-725 . 92 R-1128 . 81 R-1334 . 63 R-2741 .40 R-32	Slope(DD) 416.08 Curve(DDS) -18.894 Heated Basement (/ft)	R-Ø 4ft51 -1.47 R-5 8ft53 -1.97 R-1Ø 4ft51 -1.47 R-1Ø 8ft51 -1.30 Intercept .000 Slope(DD) -177.72 Curve(DDS) 3.829	Crawl (/sf)	R-0 .00 .78 R-11 fir .19 1.11 R-19 fir .20 1.12 R-30 fir .20 1.12 R-38 fir .20 1.12 R-49 fir .20 1.12 Slope(DD) 36.87 Curve(DDS) -19.232	Window U-value (/sf) 1-Pane .00 .91 2-Pane06 .49 3-Pane09 .32 R-1012 .11	Slope(DD) 47.72 Curve(DDS)505 5.81 MBtu 2.62 MBtu .31 MBtu
ing Series Two	ŭ	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-0 R-1 R-1 R-11 R-11 R-19 R-22 R-36 R-36 R-38 R-38 R-38 R-38 R-38 R-38 R-38 R-38	Slope(DD) 923.28 Curve(DDS) -37.920 Slab (/ft)	R-062 -4.80 R-5 2ft57 -3.47 R-10 2ft56 -2.97 R-10 4ft56 -3.14 R-10 4ft54 -2.30 Intercept312 Slope(DD) -917.53 Curve(DDS) 46.476	Unheated Basement (/sf)	R-0 R-11 flr23 .39 R-19 flr14 .55 R-30 flr09 .64 Intercept .913 Slope(DD) -370.41 Curve(DDS) 34.714	Infiltration (/sf flr) ELF Ach .0007(.58) .00 .18 .0005(.41)05 .13 .0003(.25)12 .08	Slope/.001ELF .292 Curve/.001ELF052 Base Load = Typical Load = Residual Load =
MApartment Prototype Sid	eating Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-1 R-11 R-13 R-13 R-13 R-19 R-19 R-19 R-27 R-27 R-27 R-27 R-34 R-	Slope(DD) 7502.64 Curve(DDS) 20.867 Heated Basement (/ft)	R-Ø -10.39 188.76 R-5 4ft -12.60 115.26 R-5 8ft -13.26 93.09 R-10 4ft -13.11 98.26 R-10 8ft -14.04 67.09 Intercept .000 Slope(DD) 8319.41 Curve(DDS) -84.751	Crawi (/sf)	R-0 .00 26.75 R-11 flr -13.94 3.52 R-19 flr -16.23 -29 R-38 flr -17.67 -2.70 R-38 flr -18.06 -3.25 R-49 flr -18.95 -4.83 Intercept -8.386 Slope(DD) 7294.79 Curve(DDS) -86.178	Window U-value (/sf) 1-Pane .00 183.76 2-Pane -14.89 80.36 3-Pane -19.16 50.73 R-10 -24.17 15.88	Slope(DD) 6730.81 Curve(DDS) 8.706 103.21 MBtu 33.35 MBtu 5.56 MBtu
Great Falls MT WYEC	H	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 43.94 R-7 -16.20 16.94 R-11 -18.79 12.63 R-19 -21.11 8.76 R-22 -21.93 7.39 R-30 -23.02 5.57 R-38 -23.69 4.46 R-49 -24.24 3.54 R-60 -24.60 2.94	Slope(DD) 8029.77 Curve(DDS) -104.329 Slab (/ft)	R-0 -13.55 83.42 R-5 2ft -14.84 40.42 R-5 4ft -15.22 27.92 R-10 2ft -15.07 32.76 R-10 4ft -15.59 15.59 Intercept -21.027 Slope(DD) 15780.18 Curve(DDS) -461.812	Unheated Basement (/sf)	R-0 -10.39 9.44 R-11 flr -14.30 2.92 R-19 flr -15.83 .37 R-30 flr -16.82 -1.27 Intercept -5.910 Slope(DD) 6423.47 Curve(DDS) -668.967	Infiltration (/sf flr) ELF Ach .0007(***) .00 24.39 .0005(.74) -9.12 16.79 .0003(.44)-17.63 9.70	Slope/.001ELF 30.437 Curve/.001ELF 6.303 Base Load = Typical Load = Residual Load =

Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 1.96 R-7 -1.96 .21 R-11 -2.2404 R-13 -2.4818 R-27 -2.3817 R-34 -2.3413	Slope(DD) -299.19 Curve(DDS) 123.337 Heated Basement (/ft)	R-Ø63 33.02 R-S 4ft .26 38.38 R-E 8ft .41 39.29 R-10 4ft .77 41.46 Intercept 45.601 Slope(DD) -479.10 Curve(DDS) 3.683	R-0 3.97 R-11 flr 1.28 4.80 R-19 flr 1.03 4.64 R-30 flr 92 4.57 R-38 flr 90 4.55 R-49 flr 83 4.51 Intercept 4.222 Slope(DD) 523.16 Curve(DDS) -111.630	Window U-value (/sf) 1-Pane .00 -23.54 2-Pane 1.28 -16.61 3-Pane 2.34 -10.86 R-10 3.59 -4.11	Slope(DD) -1830.71 Curve(DDS) 35.576 63.62 MBtu 42.75 MBtu 19.94 MBtu
000	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-0 R-7 -8.30 2.79 R-11 -9.62 1.93 R-19 -10.81 1.16 R-22 -11.12 .96 R-38 -11.78 .53 R-49 -11.91 .44 R-60 -12.00 .38	Slope(DD) 959.56 Curve(DDS) 70.790 Slab (/ft)	R-0 -6.1205 R-5 2ft -6.1311 R-5 4ft -6.1417 R-10 2ft -6.1523 R-10 4ft -6.1523 R-10 4ft -6.1523 Slope(DD) -64.53 Curve(DDS) 6.203	R-0 R-11 flr .21 4.11 R-19 flr .11 4.04 R-30 flr .04 3.99 Intercept 3.810 Slope(DD) 285.94 Curve(DDS) -65.286	Infiltration (/sf flr) ELF Ach .0007(.68) .00 4.47 .0005(.48) -1.69 3.37 .0003(.29) -3.60 2.13	Slope/.001ELF 7.630 Curve/.001ELF -1.786 Base Load = Typical Load = Residual Load =
une story Frototype sid eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 .00 .08 R-7 .02 R-11 .00 .00 R-11 R-13 .00 .00 R-27 .00 .00 R-34 .00 .00 R-34 .00 .00	Slope(DD) -3.50 Curve(DDS) 3.427 Heated Basement (/ft)	R-00903 R-5 4ft1010 R-5 8ft1010 R-10 4ft1010 R-10 8ft1010 Intercept076 Slope(DD) -2.99 Curve(DDS) .113 Crawl (/sf)	00 11 flr06 19 flr06 38 flr06 49 flr06 5lope(DD) -6 Curve(DDS) 2.	r) Window U-value (/sf) 1-Pane .00 .20 2-Pane0402 3-Pane0402 R-100402	Slope(DD) -8.68 Curve(DDS) .615 = .78 MBtu = .06 MBtu
¥ ¥	<pre>(MBtu) (KBtu)</pre>	(/sf) (90 (35) (49 (38) (49 (98) (55 (-01) (55 (-01) (55 (-01) (55 (-01)) -20.15 S) 13.383 (/ft)	0903 08 .03 08 .03 08 .03 08 .03 (OD) 13.87 (DD) -1.816 Basement (/sf)	6969691661616161616161616161616263	on (/sf flr .0001 0202 02	.001ELF130 .001ELF .162 Base Load Typical Load Residual Load

	ooling Load	Delta Component (MBtu) (KBtu)) 88	-11637 -13658	-27668 -34465	Slope(DD) -723.21 Curve(DDS) 153.501	Heated Basement (/ft)	R-6 R-5 4ft .26 61.84 R-5 8ft .27 62.09 R-10 4ft .30 62.84 R-10 8ft .39 65.09 Intercept 69.472 Slope(DD) -526.05 Curve(DDS) 3.813	Crawl (/sf)	R-11 flr .69 4.84 R-19 flr .66 4.79 R-30 flr .66 4.79 R-30 flr .66 4.79 R-30 flr .66 4.79	Intercept 4.58 Slope(DD) 364.0 Curve(DDS) -131.46	Window U-value (/sf) 1-Pane .00 -27.61 2-Pane 1.44 -17.61 3-Pane 2.33 -11.45 R-10 3.37 -4.20	Slope(DD) -1859.78 Curve(DDS) 30.837	45.93 MBtu 38.41 MBtu 24.01 MBtu
Series Two	ŭ	Delta Component (MBtu) (KBtu)	(/ -0 .00 5 -7 -2.71 1	-11 -3.14 -19 -3.53 -22 -3.54	R-38 -3.56 .02 R-38 -3.56 .02 R-49 -3.5902 R-60 -3.6004	Slope(DD) -139.31 Curve(DDS) 192.980	Slab (/ft)	-0 -2.41 -4.91 -5 2ft -2.42 -5.16 -16 4ft -2.42 -5.16 -10 2ft -2.42 -5.16 -10 4ft -2.36 -3.66 Intercept .000 Slope(DD) -1718.74 Curve(DDS) 125.667	Unheated Basement (/sf)	-0 3.69 -11 flr .45 4.44 -19 flr .49 4.51 -30 flr .52 4.56	Intercept 4.635 Slope(DD) -86.18 Curve(DDS) -19.181	Infiltration (/sf flr) ELF Ach 0007(.68) .00 3.22 0005(.48)94 2.43 0003(.28) -2.01 1.54	Slope/.001ELF 5.542 Curve/.001ELF -1.354	Base Load = Typical Load = Residual Load =
Mid Town Prototype Siding	ting Load	Delta Component (MBtu) (KBtu)	9.00	-1163 -1363 -1963	-2703 -	Slope(DD) Curve(DDS)	Heated Basement (/ft)	R-00300 R R-5 4ft0300 R R-5 8ft0300 R R-10 4ft0300 R R-10 8ft0300 R Slope(DD)000 Curve(DDS)	Crawl (/sf) U	R-0 .05 R R-11 flr02 .02 R R-19 flr02 .02 R R-30 flr02 .02 R R-49 flr02 .02	Intercept Slope(DD) Curve(DDS) 2	Window U-value (/sf) 1-Pane .00 .06 .2-Pane010101010101	Slope(DD) -2.78 Curve(DDS) .197	.21 MBtu .01 MBtu .04 MBtu
Honolulu HI TMY M	Неа	Delta Component (MBtu) (KBtu)	, % % % % % % % % % % % % % % % % % % %	-1112 .0 -19130 -22130	R-36 13	lope(DD) -12.23 urve(DDS) 8.119	Slab (/ft)	R-6	Unheated Basement (/sf) (5555	Intercept000 Slope(DD) .00 Curve(DDS) .000	Infiltration (/sf flr) V ELF Ach .0007(.52) .0001 .0005(.37)0102 .0003(.22)0102	Slope/.001ELF083 Curve/.001ELF .104	Base Load = Typical Load = Residual Load =

Cooling Load	Delta Component (MBtu) (KBtu)	Wail (/sf) R-0 .0034 R-733 -1.38 R-1138 -1.52 R-1326 -1.18 R-1921 -1.00 R-271787 R-341478	Slope(DD) -1074.69 Curve(DDS) 187.817 Heated Basement (/ft)	R-0 .00 54.87 R-5 4ft .26 63.70 R-5 8ft .35 66.37 R-10 4ft .35 66.37 R-10 8ft .41 68.53 Intercept 74.496 Slope(DD) -633.99 Curve(DDS) 2.609	Crawl (/sf)	R-0 R-11 flr .74 3.98 R-19 flr .86 4.19 R-30 flr .93 4.30 R-38 flr .95 4.33 R-49 flr 1.00 4.40 Intercept 4.47 Slope(DD) -152.33 Curve(DDS) -90.429	Window U-value (/sf) 1-Pane .00 -27.48 2-Pane 1.50 -17.10 3-Pane 2.36 -11.10 R-10 3.38 -4.04	Slope(DD) -1785.91 Curve(DDS) 28.217 43.43 MBtu 36.60 MBtu 22.04 MBtu
g Series T≅o	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 -3.02 1.71 R-11 -3.51 .91 R-13 -3.94 .19 R-22 -4.00 .09 R-38 -4.1312 R-49 -4.05 .009 R-60 -4.00 .09	Slope(DD) -99.59 Curve(DDS) 208.899 Slab (/ft)	R-0 R-5 2ft -1.75 -3.30 R-5 4ft -1.75 -3.30 R-10 2ft -1.75 -3.30 R-10 4ft -1.75 -3.30 R-10 4ft -1.72 -2.47 Intercept .000 Slope(DD) -1191.48 Curve(DDS) 100.802	Unheated Basement (/sf)	R-0 .00 2.74 R-11 fir .80 4.08 R-19 fir .84 4.14 R-30 fir .87 4.19 Intercept 4.204 Slope(DD) 23.70 Curve(DDS) -60.152	Infiltration (/sf flr) ELF Ach .0007(.68) .00 3.14 .0005(.47)77 2.50 .0003(.28) -1.78 1.65	Slope/.001ELF 6.271 Curve/.001ELF -2.552 Base Load = Typical Load = Residual Load =
MApartment Prototype Sidin ating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 .04 R-7 .01 .00 R-1101 .01 R-130101 R-190101 R-270101 R-340101	Slope(DD) -8.78 Curve(DDS) 3.082 eated Basement (/ft)	-0 -0 -01 .00 -5 4ft -01 .00 -5 8ft -01 .00 -10 4ft -01 .00 -10 8ft -01 .00 Intercept .000 Slope(DD) .000 Curve(DDS) .000	rawl (/sf)	-0 .00 .02 -11 flr01 .00 -19 flr01 .00 -30 flr01 .00 -49 flr01 .00 Intercept .001 Slope(DD) -2.57 Curve(DDS) 1.083	1-Pane .00 .10 2-Pane .0101 3-Pane0101 R-100101	Slope(DD) -4.18 Curve(DDS) .296 .25 MBtu .02 MBtu
Honolulu HI TMY . MAF	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 .34 R-1 .15 .09 R-1118 .05 R-1920 .01 R-3020 .00 R-4920 .00 R-6020 .00	Slope(DD) -3.54 Curve(DDS) 10.334 Slab (/ft) He	R-001 .00 R- R-5 2ft01 .00 R- R-5 4ft01 .00 R- R-10 2ft01 .00 R- R-10 4ft01 .00 R- Intercept .000 Slope(DD) .000 Curve(DDS)000	Unheated Basement (/sf) Cr	R-0 R-11 flr01 .00 R-19 flr01 .00 R-18 flr01 .00 R-19 flr01 .00 R-10 R-10 flr01 .00 R-10 R-10 R-10 R-10 R-10 R-10 R-10 R-	Infiltration (/sf flr) Wi ELF Ach .0007(.52) .0000 .0005(.37)0101 .0003(.22)0101	Slope/.001ELF042 Curve/.001ELF .052 Base Load = Typical Load = Residual Load =

	Cooling Load	Delta Component (MBtu) (KBtu)	6.4	-11 -2.83 1.4 -13 -3.23 1.6	-19 -3.43 .8	-34 -3.86 .5	Slope(DD) 613.32 Curve(DDS) 22.176	Heated Basement (/ft)	R-Ø -2.43 25.73 R-5 4ft -2.44 25.67 R-5 8ft -2.42 25.73 R-1Ø 4ft -2.42 25.79 R-1Ø 8ft -2.49 25.37 Intercept 24.704 Slope(DD) 81.07 Curve(DDS) -1.374	Crawl (/sf)	R-11 fir .74 4.83 R-19 fir .74 4.83 R-30 fir .52 4.69 R-38 fir .44 4.64 R-49 fir .40 4.61 Intercept 4.386 Slope(DD) 385.13 Curve(DDS) -76.378	Window U-value (/sf) 1-Pane .00 -3.96 2-Pane04 -4.18 3-Pane .22 -2.78 R-10 .52 -1.15	Slope(DD) -519.79 Curve(DDS) 14.009	48.97 MBtu 26.96 MBtu 6.95 MBtu
ng Series Two	Č	Delta Component (MBtu) (KBtu)	eiling (/sf -0 .00 8.5 -7 -8.17 3.2	-11 -9.48 2.3 -19 -10.65 1.6	-22 -11.04 1.3 -30 -11.57 1.0	89 14 30	Slope(DD) 1460.70 Curve(DDS) -3.716	Slab (/ft)	R-0 -6.8059 R-5 2ft -6.95 -1.50 R-6 4ft -6.90 -1.20 R-10 2ft -7.00 -1.80 R-10 4ft -6.8696 Intercept .0000 Slope(DD) -449.29 Curve(DDS) 32.544	Unheated Basement (/sf)	R-0 R-11 flr86 3.79 R-19 flr62 3.95 R-3Ø flr46 4.05 Intercept 4.287 Slope(DD) -297.79 Curve(DDS) .527	Infiltration (/sf flr) ELF Ach .0007(.58) .00 3.99 .0005(.41) -1.58 2.96 .0003(.24) -3.30 1.85	Slope/.001ELF 6.494 Curve/.001ELF -1.136	Base Load = Typical Load = Residual Load =
Story Prototype Sidi	ating Load	Delta Component (MBtu) (KBtu)	00 7 -4.7	-11 -5.37 2.8 -13 -6.13 2.1	-19 -6.50 1.8 -27 -7.06 1.3	-34 -7.41 1.0	Slope(DD) 1264.52 Curve(DDS) 27.966	Heated Basement (/ft)	R-0 R-5 4ft -6.59 11.28 R-5 8ft -7.06 8.45 R-10 4ft -6.99 8.87 R-10 8ft -7.54 5.55 Intercept -1.000 Slope(DD) 595.79 Curve(DDS)531	Crawl (/sf)	R-0 R-11 flr -6.71 1.14 R-19 flr -7.66 .52 R-30 flr -8.05 .27 R-38 flr -8.14 .21 R-49 flr -8.40 .04 Intercept430 Slope(DD) 815.59 Curve(DDS) 66.291	Window U-value (/sf) 1-Pane .00 26.88 2-Pane -3.47 8.10 3-Pane -4.06 4.90 R-10 -4.76 1.12	Slope(DD) 424.74 Curve(DDS) 22.480	38.79 MBtu 12.46 MBtu 1.16 MBtu
	H	Delta Component (MBtu) (KBtu)	, 66 9 8.93 3	-11 -10.35 2.6 -19 -11.63 1.8	-22 -12.08 1.5 -30 -12.69 1.1	-38 -13.05 .9 -49 -13.34 .7 -60 -13.52 .6	Slope(DD) 1693.93 Curve(DDS) -18.093	Slab (/ft)	R-0 -6.18 13.75 R-5 2ft -7.38 6.52 R-5 4ft -7.73 4.41 R-10 2ft -7.73 4.41 R-10 4ft -8.10 2.18 Intercept .000 Slope(DD) 676.79 Curve(DDS) 35.529	Unheated Basement (/sf)	R-0 R-11 flr -7.39 .70 R-19 flr -7.99 .31 R-30 flr -8.37 .06 Intercept581 Slope(DD) 856.10 Curve(DDS) -52.939	Infiltration (/sf flr) ELF Ach .0007(.66) .00 3.52 .0005(.45) -1.95 2.26 .0003(.29) -3.58 1.20	Slope/.001ELF 3.214 Curve/.001ELF 2.598	Base Load = Typical Load = Residual Load =

ng Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .000 3.00 R-7900 1.11 R-11 -1.03 .84 R-13 -1.12 .65 R-19 -1.17 .65 R-27 -1.26 R-34 -1.31 .25	Slope(DD) 301.93 Curve(DDS) 47.675 ated Basement (/ft)	6 4ft63 42.25 5 8ft63 42.25 10 4ft64 42.00 10 8ft64 42.00 Intercept 41.607 Slope(DD) -24.77 Curve(DDS) .581	awl (/sf)	-0 .00 3.87 -11 flr .62 4.90 -19 flr .60 4.87 -30 flr .49 4.65 -48 flr .47 4.65 -49 flr .40 4.53 Intercept .4.339 Slope(DD) .567.02 Curve(DDS) -128.557	1-Pane .00 -12.00 2-Pane .46 -8.80 3-Pane .90 -5.77 R-10 1.41 -2.20	Slope(DD) -984.69 Curve(DDS) 20.086 33.62 MBtu 25.03 MBtu 13.27 MBtu
Series Two Coolin	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 7.85 R-7 -2.97 2.90 R-11 -3.44 2.11 R-19 -3.87 1.40 R-30 -4.18 .88 R-36 -4.18 .88 R-49 -4.38 .56 R-60 -4.43 .70	Slope(DD) 1247.82 Curve(DDS) 12.794 Slab (/ft) He	-0 -2.63 -5.25 R- -5 2ft -2.56 -6.00 R- -5 4ft -2.51 -4.75 R- -10 2ft -2.53 -5.25 R- -10 4ft -2.45 -3.25 R- Intercept .000 Slope(DD) -1376.81 Curve(DDS) 77.020	Unheated Basement (/sf) Cr	-066 2.77 R -11 flr .01 3.88 R -19 flr .11 4.05 R -30 flr .17 4.15 R Intercept 4.384 Slope(DD) -294.32 Curve(DDS) -4.113	Infiltration (/sf flr) Wi ELF Ach 0007(.57) .00 3.33 0005(.41) -1.13 2.39 0003(.25) -2.27 1.44	Slope/.001ELF 4.833 Curve/.001ELF104 Base Load = Typical Load = Residual Load =
d Town Prototype Siding ing Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 R-7 R-11 R-13 R-13 R-13 R-27 R-27 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 665.57 Curve(DDS) 102.919 eated Basement (/ft)	-0 -2.19 17.79 R -5 4ft -2.68 5.54 R -5 8ft -2.76 3.54 R -10 4ft -2.74 4.04 R -10 8ft -2.82 2.04 R Intercept .037 Slope(DD) 85.31 Curve(DDS) 8.571	rawi (/sf)	-0	1-Pane .00 22.18 . 2-Pane -2.23 6.69 . 3-Pane -2.61 4.04 . R-10 -3.06 .93	Slope(DD) 351.44 Curve(DDS) 18.51Ø 16.85 MBtu 5.73 MBtu 3.11 MBtu
Jacksonville FL TMY Mi. Heat	Delta Component (MBtu)	Ceiling (/sf) R-0 .00 .00 9.39 R-7 -3.65 3.31 R-11 -4.24 2.33 R-22 -4.90 1.22 R-38 -5.21 .71 R-49 -5.30 .57 R-60 -5.35 .48	Slope(DD) 1255.72 Curve(DDS) 55.438 Slab (/ft) H	R-6 2ft -2.81 2.29 R R-5 2ft -2.81 2.29 R R-16 2ft -2.85 1.29 R R-16 2ft -2.85 1.29 R R-10 4ft -2.89 .29 R Intercept .0000 Slope(DD) -39.88 Curve(DDS) 54.376	Unheated Basement (/sf) C	R-Ø -2.19 1.19 R R-11 flr -2.73 .29 R R-19 flr -2.85 .09 R R-3Ø flr -2.92Ø3 R Intercept346 Slope(DD) 418.89 Curve(DDS) -23.437	Infiltration (/sf flr) W ELF Ach .0007(.64) .00 1.98 .0005(.48) -1.33 .87 .0003(.29) -2.14 .20	Slope/.001ELF959 Curve/.001ELF 5.417 Base Load = Typical Load = Residual Load =

Cooling Load	ent Delta Component 8tu) (MBtu) (KBtu)	(sf) Wall (/sf) -87 R-0 .00 2.40 -88 R-760 .52 -88 R-1168 .25 -14 R-1375 .03 -73 R-277708 -89 R-277708 -89 R-3476 .00	525 Slope(DD) -139.48 525 Curve(DDS) 108.939 ft) Heated Basement (/ft)	.98 R-640 52.31 .98 R-5 4ft40 52.48 .48 R-5 8ft39 52.81 .98 R-10 4ft40 52.48 .14 R-10 8ft38 53.14 000 Intercept 54.442 Slope(DD) -143.59 883 Curve(DDS) 2.241	sf) Crawl (/sf)	.62 R-0 .66 R-11 flr .83 4.67 .86 R-19 flr .81 4.63 .99 R-30 flr .85 4.71 R-38 flr .86 4.73 R-49 flr .90 4.79 314 Intercept 4.668 .57 Slope(DD) 100.59 Curve(DDS) -71.964	flr) Window U-value (/sf) .45	781 Slope(DD) -1080.02 781 Curve(DDS) 23.703 oad = 31.35 MBtu oad = 23.68 MBtu oad = 11.85 MBtu
Siding Series Two	nt Delta Componel u) (MBtu) (KBt	f) Ceiling (7) 29 R-0 .000 7 21 R-1 -3.10 2 R-11 -3.60 1 R-19 -4.04 1 R-22 -4.14 63 R-38 -4.39 R-47 R-50 -4.51	55 Slope(DD) 968 63 Curve(DDS) 60. t) Slab (/	8 R-0 -1.83 4 8 R-5 2ft -1.85 3 8 R-10 2ft -1.85 3 8 R-10 2ft -1.85 3 8 R-10 4ft -1.91 2 8 Intercept 5!ope(DD) 989	f) Unheated Basement (/	R-040 2 R-11 flr .22 3 R-19 flr .34 3 R-30 flr .42 3 Intercept 4. Slope(DD) -425 Curve(DDS) 18.	Infiltration (/sf ELF Ach .0007(.57) .00 3 9 .0005(.41) -1.09 2 2 .0003(.24) -2.25 1	S Slope/.001ELF 5. Curve/.001ELF Base L Typical L Residual L
MApartment Prototype S Heating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 R-13 R-13 R-13 R-15 R-27 R-27 R-34 R-34 R-34 R-35 R-36 R-37 R-37 R-34 R-185 R-34	Slope(DD) 479.5 Curve(DDS) 128.36 Heated Basement (/ft	R-6	Crawl (/sf	R-0 R-11 flr -2.41 1.16 R-13 flr -2.71 .66 R-38 flr -2.83 .47 R-49 flr -2.95 .45 Intercept -2.93 .23 Slope(DD) 568.38 Curve(DDS) 87.976	r) Window U-value (/sf 1-Pane .00 21.2 2-Pane -2.21 5.8 3-Pane -2.55 3.5 R-10 -2.95 .7	Slope(DD) 257.4 Curve(DDS) 20.72 = 15.94 MBtu = 5.20 MBtu = 3.33 MBtu
Jacksonville FL TMY	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 9.53 R-7 -3.77 3.25 R-11 -4.37 2.24 R-19 -4.91 1.34 R-22 -5.04 1.12 R-38 -5.22 .83 R-49 -5.32 .65 R-60 -5.46 .43	Slope(DD) 1123.01 Curve(DDS) 81.603 Slab (/ft)	R-Ø -2.84 8.76 R-5 2ft -3.03 2.60 R-5 4ft -3.07 1.10 R-10 2ft -3.07 1.10 R-10 4ft -3.10 .26 Intercept .260 Slope(DD) -115.81 Curve(DDS) 67.062	Unheated Basement (/sf)	R-0 R-11 flr -3.01 .15 R-19 flr -3.11 .00 R-30 flr -3.1610 Intercept342 Slope(DD) 326.97 Curve(DDS) -16.984	Infiltration (/sf flr ELF Ach .0007(.64) .00 1.86 .0005(.48) -1.32 .76 .0003(.29) -2.09 .12	Slope/001ELF -1.313 Curve/.001ELF 5.677 Base Load Typical Load Residual Load

		component (KBtu)	(/sf) .000 .000 .000 .000	.00 .000 (/ft)	19 19 19 13 13 14 . 46	(/sf)	01 01 01 01 01 02 02 02 03 03 03	(/sf) .00 .00 .00	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Cooling Load	Delta Comp (MBtu)	Wall R-0 R-7 R-11 .000 R-13 .000 R-13 .000 R-27 .000	Slope(DD) Curve(DDS) Heated Basement	R-0 R-5 4ft01 R-5 8ft01 R-10 4ft01 R-10 8ft .00 Intercept Slope(DD) .curve(DDS)	Crawl	R-8 R-11 fir .01 R-19 fir .00 R-30 fir .00 R-38 fir .00 R-49 fir .00 Slope(DD) .	Window U-value 1-Pane .000 2-Pane .000 3-Pane .000 R-10 .000	Slope (DD) Curve (DDS) .10 MBtu .02 MBtu
Series Two	Coo	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 .005 R-7005 .002 R-11006 .01 R-2207 .01 R-3007 .01 R-3807 .01 R-49008 .000 R-60008 .000	Slope(DD) 6.60 Curve(DDS) .375 Slab (/ft)	R-0 R-5 2ft0225 R-5 4ft0225 R-10 2ft0225 R-10 4ft0119 Intercept01070 Slope(DD) -39.84 Curve(DDS) 1.684	Unheated Basement (/sf)	R-0 R-11 fir .0001 R-19 fir .0001 R-30 fir .0001 Intercept014 Slope(DD) 1.06 Curve(DDS)432	Infiltration (/sf flr) ELF Ach .0007(.58) .00 .00 .0005(.42) .00 .00 .0003(.25) .00 .00	Slope/.001ELF .000 Curve/.001ELF .000 Base Load = Typical Load = Residual Load =
One Story Prototype Siding	Heating Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 -27.15 23.95 R-11 -31.02 20.51 R-13 -35.81 16.24 R-27 -42.64 10.16 R-34 -45.38 7.73	Slope(DD) 1Ø168.56 Curve(DDS) -227.541 Heated Basement (/ft)	R-Ø -14.5Ø 175.83 R-6 4ft -23.04 124.38 R-5 8ft -26.81 101.67 R-1Ø 4ft -25.39 110.23 R-1Ø 8ft -31.15 75.53 Intercept .000 Slope(DD) 7627.98 Curve(DDS) -81.964	Crawl (/sf)	R-0 R-11 flr -42.28 .91 R-19 flr -49.68 -3.89 R-30 flr -54.40 -6.96 R-38 flr -55.48 -7.66 R-49 flr -55.49 -9.68 R-49 flr -56.69 -9.68 Curve(DD) 9545.62	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope(DD) 10273.97 Curve(DDS) -64.083 = 255.36 MBtu = 93.35 MBtu = 9.92 MBtu
Juneau AK TMY	e H	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 49.32 R-7 -45.32 19.89 R-11 -52.56 15.19 R-19 -59.06 10.97 R-22 -61.63 9.30 R-38 -67.14 5.72 R-49 -69.03 4.49 R-60 -70.25 3.70	Slope(DD) 10298.72 Curve(DDS) -334.001 Slab (/ft)	-23.37 122. 4ft -33.15 63. 4ft -36.61 42. 4ft -34.90 52. 4ft -39.60 24. ntercept -33.6 lope(DD) 16956. urve(DDS) -338.6	Unheated Basement (/sf)	R-0 -14.50 18.95 R-11 flr -40.28 2.21 R-19 flr -47.37 -2.39 R-30 flr -51.92 -5.35 Intercept -13.278 Slope(DD) 10770.33 Curve(DDS) -874.605	tration (/s Ach (.77) .00 2 (.56)-12.46 2 (.33)-24.88 1	Slope/.001ELF 40.064 Curve/.001ELF .325 Base Load : Typical Load : Residual Load :

		Component (KBtu)	() s /) 00. 00. 00. 00. 00. 00.	.00 .000 (/ft)	00000000000000000000000000000000000000	(/sf)	.000 .033 .033 .033 .033 .031 5.13	(/sf) 10 10 08	.307
	þe	Delta Co (MBtu)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	e(DD) e(DDS) asement	.000 .000 .000 .000 .000 .000 .000 .00		.002 .02 .02 .02 .02 .02 .02 .02 e(DD)		(DD) (DDS) Btu Btu Btu
	ooling Loa		X X X X X X X X X X X X X X X X X X X	Slope Curve Heated Bas	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Interc Slope	Crawl	R-0 R-11 flr R-19 flr R-3Ø flr R-49 flr Slope Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	OLODO
	Coc	omponent (KBtu)	(,s, . 693 . 693 . 622 . 622 . 621	19.76 912 (/ft)	. 66 . 25 . 25 . 25 . 25 . 896 . 898 . 263 . 99	(/st)	9999 999	. 66 . 68 . 68	. 0000 . 0000 . Load = Load = Load =
о ж		elta Cα (MBtυ)	00	(\$00) (00)	.00 .00 .01 .00 .00 .00 .00 .00 .00	Basement	.000 .000 .000 .000 .000)	tion (/ 	SIELF Base Typical Residual
Series		٥	C C C C C C C C C C C C C C C C C C C	Slope Curve Slab	R-6 2ft R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter- Slope Curve	Jnheated		Infiltrat ELF Ach 0007(.58) 0005(.42) 0003(.25)	Slope/.0016 Curve/.0016
Siding		ent tu)	;f) 78 26 07 00 36 13	22 36 t)	940 900 900 900 900 10	f) (7	f) 38 72 30	98 92 92
rototype		mpon (KB	(/s 81 22. 49 19. 48 15. 20 9.	9219. -69.8 t (/f	.55 213. .61 136. .68 110. .35 118. .87 80. .0 .7872.) -66.5	s/)	.00 30. 53 4. .18 .86 -2. .24 -3. .34 -5. .9627.	(/s 60 206. 68 94. 67 60.9	8244.
۵.	b e	Delta Co (MBtu)	- 11 - 11 - 13 - 15 - 16 - 16 - 19 - 19 - 19	ope(DD) rve(DDS) Basemen	t -12 t -13 t -13 t -14 ercept pe(DD)		r -15. r -18. r -20. r -20. r -21. r -21. r -21.	U-value ne -16.	MBtu MBtu MBtu MBtu MBtu
Mid Town	ating Lo		× × × × × × × × × × × × × × × × × × ×	Slo Cur Heated		Craw.	R-0 R-11 f- R-19 f- R-30 f- P-30 f- Inf- S- C-	Window 1 1 − Pa 3 − Pa R − 10	Slor Curi 123.53 40.75 1.44
ΤΜΥ	Ŧ	Component (KBtu)	(/sf) 15.48 16.91 16.91 16.91 16.91 17.48	1.526 (/ft)	0.440 0.440 0.440 0.440 0.440 0.440	(/sf)	14.23 3.93 .53 -1.66 7.696 92.19	sf flr) 25.90 17.96 10.45	3.208 5.417 Load = Load = Load = Load =
-		elta Comp (MBtu) ((DD) 100 (DDS) -21	12.62 15.89 15.91 15.91 16.58 16.58 0) 158 0) 158	sement	55 73 77 88 -78		ELF ELF Base Typical
aau AK		De. (Ceinng RR-6ing RR-111 - ing RR-122 - I RR-388 - I RR-498 - I	Slope(D Curve(D Slab	2ft 2ft 2ft 2ft 2ft Cure	ated Ba	fir -15, fir -17, fir -19, fir -19, Slope(DD)	iltrati Ach 7(.78) 56(.57) 3(.35)-	9/.001 9/.001 R
Junea					Ø 10 10 10 10 10 10 10 10 10 10 10 10 10	Unhe	R-6 R-11 R-19 R-30	Infi ELF .0007 .0005	Curve

	Component (KBtu)	(s f) (s 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20.54 -2.854 (/ft)	000000000000000000000000000000000000000	(/sf)	. 60 . 61 . 60 . 60	.13 .089 .086	10.32 208
Cooling Load	Delta Cor (MBtu)	Wall R-0 R-7 R-11 .000 R-13 .00 R-19 .00 R-2700	Slope(DD) Curve(DDS) Heated Basement	R-0 .00 R-5 4ft .00 R-5 8ft .00 R-10 4ft .00 R-10 8ft .00 Slope(DD) Curve(DDS)	Crawl	R-0 R-11 flr .000 R-19 flr .000 R-30 flr .000 R-38 flr000 R-49 flr000 Slope(DD) Curve(DDS)	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope(DD) Curve(DDS) .08 MBtu .02 MBtu
J	mponent (KBtu)	(/sf) . 68 . 68 . 61 . 61 . 61 . 61	11.51 .341 (/ft)	w	(/st)	00 00 00 00 011 16.24 -2.745	(/sf flr) 02 01	063 .052 - Coad = Load = Loa
	Delta Con (MBtu)	Ceiling R-6 R-7 R-11	Slope(DD) Curve(DDS) Slab	R-0 R-5 2ft .00 R-5 4ft .00 R-10 2ft .00 R-10 4ft .00 Intercept Slope(DD) Curve(DDS)	Unheated Basement	R-0 R-11 flr .01 R-19 flr .00 R-30 flr .00 Intercept Slope(DD) Curve(DDS)	Infiltration (ELF Ach .0007 (58) .000 (6005 (58) .000 .000 (58) .000 (58) .000 (58) .000 (58) .000 (58)	Slope/.001ELF Curve/.001ELF Bas Typica Residua
leating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-0 R-7 R-11 -9.21 R-13 R-13 R-13 R-13 R-14 R-19 R-17 R-27 R-27 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-36 R-36 R-36 R-37 R-37 R-37 R-37 R-37 R-37 R-37 R-37	Slope(DD) 8968.45 Curve(DDS) -6.980 Heated Basement (/ft)	-0 -11.93 249. -5 4ft -14.76 154. -5 8ft -15.69 123. -10 4ft -15.42 132. -10 8ft -16.71 89. Intercept .0 Slope(DD) 8705. Curve(DDS) -66.1	Crawl (/sf)	R-0 R-11 fir -15.97 5.72 R-19 fir -18.63 1.28 R-30 fir -20.31 -1.52 R-49 fir -20.89 -2.15 R-49 fir -21.80 -3.99 Intercept -8.174 Slope(DD) 8553.98 Curve(DDS) -127.477	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope(DD) 7976.22 Curve(DDS) -5.533 = 116.30 MBtu = 36.97 MBtu
Ť	Delta Component (MBtu) (KBtu)	.00 51.18 18.80 19.85 21.80 14.85 25.49 10.36 25.75 6.59 27.53 5.29 28.19 4.19	(DD) 9531.35 (DDS) -151.495 (/ft)	16.29 176.4 16.98 164.1 16.98 86.9 16.63 92.6 17.56 61.4 D) 1829.8 DS) -339.01	asement (/sf)	fir -16.92 4.15 fir -18.67 1.21 fir -19.8167 Intercept -5.930 Slope(DD) 7247.64 Curve(DDS) -714.192	ion (/sf flr) .00 25.67 -9.50 17.75 -18.44 10.30	001ELF 32.583 001ELF 5.834 Base Load = Typical Load = Residual Load =

		c) t	£256	- 0 4 2 2 0 4 1	81	41 59	()	8 3 3 6 5 7 4 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	if)	88 5 4 4 8 8 5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	C 8884	ოთ	
	•	ompone (KBt	8 2 0 2 4 5 0	2.7.6		1065. -36.9	*>	6 17.6 9.3 9.3 4 8.1 6.9 6.9 4 93.4 1.27 1.27	(/s/	50.00 50	(/s 7. 3.	352.3 -2.54	
		elta C (MBtu)	9.00	1 H H	. 4. 	(00) (008)	sement	-6.94 (00)		.00 .95 .95 .94 .1.05 .1.07 .1.14 .00)	. 69 69 94 - 1.24	(SQQ)	t t u u
	g Load	۵	₩a R-6	R-13 R-13 R-27	9	Slope	ted Ba	Aft Bft Aft Maft Inter Slope	=	######################################	o ≰ Pane Pane 10	Slope (Curve (. 64 MB
	Cooling						Hea	88888 81-8 81-8 811-8	Cras	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	() ¥ 10 10 10 10 10 10 10 10 10 10 10 10 10		135
		ponent (KBtu)	(/sf) 8.21 3.32	രയം	0 ~ 0	732.35	(/ft)	-1.65 -2.92 -2.80 -3.22 -1.950 394.88	(/sf)	1.91 3.89 4.46 4.82 5.802 334.50	sf fl 2.40 1.70 1.01	3.312	Load Load
Two		lta Compo MBtu) (A	6.7-6	1001	11.1	0) 1 0S) -		-8.07 -8.28 -8.26 -8.33 -8.27 -8.27 (DD)	sement	.86 .93 .37	. 00 . 00 -1.08 -2.14	133 14	Base Typical esidual
ries		Delt. (MB		123 382 1	- 38 - 49 - 60	lope (D urve (D	lab	2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ted Ba	fir fir fir fir force	ltration Ach (.60) (.43) (.26)	e/.0016 e/.0016	_ œ_
g Se			022	: 0c 0c 0c	& & &	ωū	S	R-6 R-5 R-10 R-110 R-110 C C C C C C C C C C C C C C C C C C C	Unhea	R-0 R-11 R-19 R-30 R-30 C	Inf: ELF. .0007 .0005 .0003	Slop	
Siding		ent itu)	sf) .89 .72	n 4 ω	0	.20	ft)	.78 .97 .21 .98 .98 .000 .31	sf)		sf) .26 .00 .19	58	
otype		mpom (KB	250 (200 P 10	ω 4	5311 -92.	¢ (8 2 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Š	2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	(/ Ø 125 6 60 9 38 3 12	5388. -24.3	
Prototy	٦	Delta Co (MBtu)	. 4. 6	-19. -20.7	4.	e(DD) e(DDS)	аѕетеп	-7.7 -12.2 -13.8 -13.3 -15.8 rcept e(DD)		.0 -21.8 -25.6 -27.9 -28.5 -38.0 rcept e(DD)	.value 	(60) (608)	MBtu MBtu MBtu
Story	ng Loa	_	Wa R-0	R-13 R-27	6	Slope	ated Ba	65 Aft 55 Aft 10 Aft 10 Aft Inter Slope Curve	— *	11 10 10 10 10 10 10 10 10 10 10 10 10 1	ndow U- 1-Pane 2-Pane 3-Pane R-10	Slope	2.03 2.98 6.32
0ne	Heati	~ t	~4 @ ¢	1817	ოოო	6 ~	Ŧ	44100861	2	2112 61112 78777 167777	1.) ¥ 33 ¥ 9	8 61	d = 13
WYEC		omponent (KBtu)	(/sf 27.7 11.0	. Ø – Ø	40	5632.1 160.72	(/ft)	38.7. 13.7. 6.5 9.1(-21.89 6612.0	t (/sf)	8.9 -1.8 -3.3(-7.30 -42.82	(/sf f 13.7 9.7 5.7	19.05	se Load
.y M0		elta Co (MBtu)	9 -25.6 -29.7	-33.44 -34.86 -36.76	37.9 38.9 39.5	- (saa) (aa)		-15.06 -19.21 -20.41 -19.97 -21.64 copt (DD) (DDS)	аѕетел	-7.75 -20.71 -24.28 -26.58 -26.69 (00)	ion .000 -6.17 -12.24	JELF JELF	Bas Typics Residua
sas City) 0	0 ~ -	1 1 1	64.0	Slope(Curve(Slab	2ft 4ft 2ft 2ft Inter Slope Curve	ated B	fir fir fir Slope Curve	iltrat Ach 17 (.76) 15 (.54) 13 (.33)	pe/.001 ve/.001	
Kans								R-6 R-5 R-10 R-10	Unhe	R-11 R-11 R-30	Infilt ELF .0007(.0005(Slope	

	oonent (KBtu)	(,sf) 4.0f) 1.985 1.59 1.22 1.633 .755	736.25 3.120 (/ft)	22.17 13.17 12.42 10.42 7.67 .000 795.14 -8.027	4 to to to to 54 to 50 t	(/sf) 2.62 02 08	82.35 6.882
	n D	Wall R-0 R-7 -1.02 R-11 -1.17 R-13 -1.35 R-19 -1.44 R-27 -1.65	Slope(DD) Curve(DDS) Heated Basement	R-0 R-5 Aft -2.01 R-5 8+16 R-10		Window U-value 1-Pane .00 2-Pane38 3-Pane39 R-1040	Slope(DD) Curve(DDS) 23.78 MBtu 14.55 MBtu 4.62 MBtu
ng Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 -2.91 R-13 R-11 -3.37 R-19 R-22 -3.94 1.33 R-30 -4.13 R-38 R-4.25 R-49 R-49 R-49 R-49 R-49 R-53 R-40 R-53 R-40 R-53	Slope(DD) 1448.04 Curve(DDS) -19.686 Slab (/ft) H	R-Ø R-5 2ft -3.21 -7.83 R-5 4ft -3.20 -7.58 R-10 2ft -3.23 -8.33 R-10 4ft -3.23 -8.33 R-10 4ft -3.21 -7.83 Intercept -5.918 Slope(DD) -672.17 Curve(DDS) 44.530 Unheated Basement (/sf)	## 1.0 1.48	Infiltration (/sf flr) WELF Ach .0007(.60) .00 2.05 .0005(.43)79 1.39 .0003(.25) -1.51 .79	Slope/.001ELF 2.417 Curve/.001ELF .729 Base Load = Typical Load = Residual Load =
id Town Prototype Sidi		Wall R-0 R-7 R-11 R-11 R-13 R-13 R-13 R-13 R-14 R-27 R-15 R-15 R-17 R-19 R-27 R-58 R-27 R-58 R-27 R-58 R-34 R-10:18 R-58	Slope(DD) 4558.11 Curve(DDS) 14.248 Heated Basement (/ft)	R-0 -4.96 93.59 R-5 4ft -6.48 55.59 R-5 8ft -6.91 44.84 R-10 4ft -6.82 47.09 R-10 8ft -7.42 32.09 Intercept .000 Slope(DD) 3223.85 Curve(DDS) -22.081	-0 -11 flr -7.88 1.3 -19 flr -9.208 -30 flr -10.00 -2.1 -38 flr -10.18 -2.4 -49 flr -10.18 -2.4 Intercept -5.38 Slope(DD) 4134.4	Window U-value (/sf) 1-Pane .00 107.36 2-Pane -8.93 45.35 3-Pane -11.35 28.53 R-10 -14.20 8.75	Slope(DD) 3687.04 Curve(DDS) 14.384 61.92 MBtu 17.57 MBtu 3.84 MBtu
Kansas City MO WYEC M	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 28.80 R-7 -10.61 11.11 R-11 -12.31 8.28 R-19 -13.83 5.75 R-20 -14.37 4.85 R-30 -15.09 3.65 R-49 -15.82 2.33 R-60 -16.12 1.93	Slope(DD) 5271.21 Curve(DDS) -69.852 Slab (/ft)	R-6 -7.38 33.09 R-5 2ft -8.37 8.34 R-6 4ft -8.61 2.34 R-10 2ft -8.53 4.34 R-10 4ft -8.85 -3.66 Intercept -18.790 Slope(DD) 4457.71 Curve(DDS) 13.717	1 flr -7.97 1. 9 flr -8.96 0 flr -9.60 -1. Intercept -4.4 Slope(DD) 4033. Curve(DDS) -380.8	Infiltration (/sf flr) ELF Ach .0007(.78) .00 11.97 .0005(.54) -4.64 8.10 .0003(.32) -8.85 4.59	Slope/.001ELF 13.958 Curve/.001ELF 4.479 Base Load = Typical Load = Residual Load =

		٠,	~808868	<u> </u>	. ଜନ୍ଧ୍ୟ ଦେଉ ଜ୍ୟ ନ		#5		-	
		onen KBtu	(/sf) 4.10 1.98 1.68 1.32 1.15 1.15	814.87 -9.934 (/ft)	0 0 4 W 4 Ø W O	(/sf)	3.94 4.97 4.97 5.11 5.21 5.26 5.367 5.367 12.158	2.86 2.86 .53 .29	-5.40 4.306	
		(MBtu) (A		S)	-1.81 -2.11 -2.14 -2.18 -2.23 (DD) (DD)		. 62 . 76 . 75 . 75 . 76 . 79 . 79		68	_
	Load	Ded X		ve (44ft 8ft 4ft nterce urve(D		Ir Ir Ir Ir ope(DD)	C - < a	ope (DD) rve (DD) 6 MBtu 7 MBtu	Ω Σ Σ
	Cooling		≆ ἀ ἀ ἀ ἀ ἀ ἀ ἀ ά	Hosto	R-6 R-5 R-16 R-16 R-10 IT	Crawl	R8 R11 R13 R38 R38 F9 F101 SIC Cur	Window 1-Ps 2-Ps 3-Ps R-16	SI Cu 21.6	•
	တိ	ent tu)	sf) .46 .81 .67 .18 .18	.56 .48 .20 085 ft)		sf)		f1r) .97 .34	1 II II P P P P P P P P P P P P P P P P	0
		Componer (KBt	00 6 8 4 7 5 7 00 6 8 4 7 5 7	4 9 1265 -1.	4 4 8 8 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1	ر د	1 8 8 3 7 3 7 3 7 1 3 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1	(/sf 0 1 5 1	ass	תם – ר
Two		(MBtu)	19 - 2 - 6 - 2 - 6 - 2 - 6 - 6 - 6 - 6 - 6	4.4 ~ (S	-2.6 -2.6 -2.6 -2.6 (00) (00)	Basemen	-1.8 7 3 3 1 (00) (00)	tion 6 7 7	MOTELF MOTELF Typi	- 0
er ies		۵	R-6 :- 11 R-11 R-11 R-13 R-32 R-38		2ft 4ft 2ft 1nter Slope Curve	ated	fir	Ach (.60 (.43 (.26	9./e^	
о, О					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Unhe	R-11 R-11 88 99	Inf: ELF .0007 .0005	Cur	
Siding		± 🤄	~8004r8r	21 (+)						
		nen Btu	70.10 L 0 4 8	. 15 4		/sf)	5.93 2.38 2.38 11.26 11.57 2.47 2.47 7.66	/sf) 7.29 4.68 8.67 8.67	7.25	
otype		nodmo (KB	(/s 29 25. 29 11. 99 9. 92 6. 84 4.	4420. 44.0	11 114.8 51 68.2 91 55.0 82 57.8 82 39.3 39.3 3959.5 -27.15	4	900 15.9 113 2.3 149 31 -1.2 50 -1.5 4257.6 -50.09	(/sf 8 107.2 1 44.6 1 28.0 2 8.5	65.2	
: Prototype		elta Compon (MBtu) (KB	(/s) (/s) (/s) (/s) (/s) (/s) (/s) (/s)	(DD) 4420. (DDS) 44.0	-6.11 114.8 -7.51 68.2 -7.91 68.2 -7.91 65.08 -7.82 67.8 -8.38 39.3 cept .000 (DD) 3959.5 (DDS) -27.15	S to	.00 15.9 -8.13 2.3 -9.49 .1 -10.31 -1.2 -10.50 -1.5 -11.04 -2.4 cept -4.58 (DD) 4257.6 (DDS) -50.09	value (/sf .00 107.2 -9.01 44.6 -11.41 28.0 -14.22 8.5	(0D) 3587.2 (DDS) 18.05 Btu Btu	b t
rtment P	g Load	nodmo (KB	.00 25. 4.29 11. 4.90 9. 5.58 7. 6.49 4.	Slope(DD) 4420. Curve(DDS) 44.0	4ft -6.11 114.8 8ft -7.51 68.2 4ft -7.91 55.0 4ft -7.82 57.8 8ft -8.38 39.3 Intercept .00 Slope(DD) 3959.5 Curve(DDS) -27.15	l (/sf	.00 15.9 9 flr -9.13 2.3 9 flr -10.31 -1.2 8 flr -10.50 -1.5 9 flr -11.04 -2.4 Intercept -4.58 Slope(DD) 4257.6 Curve(DDS) -50.09	U-value (/sf ane .00 107.2 ane -9.01 44.6 ane -11.41 28.0 0 -14.22 8.5	Slope(DD) 3587.2 Curve(DDS) 18.05 .17 MBtu .99 MBtu	.9/ MBt
MApartment Prototype	ating Loa	elta Compon (MBtu) (KB	0	lope(DD) 4420. urve(DDS) 44.0	4ft -7.51 68.2 8ft -7.91 55.8 4ft -7.91 55.8 8ft -8.38 39.3 ntercept .00 lope(DD) 3959.5 urve(DDS) -27.15	S to	.00 15.9 fir -8.13 2.3 fir -9.49 .1 fir -10.31 -1.2 fir -10.50 -1.5 fir -11.04 -2.4 ntercept -4.58 lope(DD) 4257.6 urve(DDS) -50.09	Window U-value (/sf 1-Pane .00 107.2 2-Pane -9.01 44.6 3-Pane -11.41 28.0 R-10 -14.22 8.5	lope(DD) 3587.2 urve(DDS) 18.05 17 MBtu 99 MBtu	3.97 MBt
C MApartment P	ng Loa	nent Delta Compon Btu) (MBtu) (KB	0	2.15 1.79 54.69 Slope(DD) 4420. 6.220 Curve(DDS) 44.06 (/ft) Heated Basement (/f	47.23 R-Ø -6.11 114.8 21.06 R-5 4ft -7.51 68.2 14.06 R-5 8ft -7.91 55.0 16.73 R-10 4ft -7.82 57.8 7.06 R-10 8ft -8.38 39.3 2.030 Intercept .00 58.81 Slope(DD) 3959.5 2.566 Curve(DDS) -27.15	rawi (/sf	5.74 R-0 .000 15.9 1.58 R-11 flr -8.13 2.3 .07 R-19 flr -9.49 .1 90 R-30 flr -10.31 -1.2 R-3 flr -10.50 -1.5 R-49 flr -11.04 -2.4 3.609 Intercept -4.58 Slope(DD) 4257.6 73.799 Curve(DDS) -50.09	sf flr) Window U-value (/sf 11.78 1-Pane .00 107.2 7.92 2-Pane -9.01 44.6 4.46 3-Pane -11.41 28.0 R-10 -14.22 8.5	3.395 Slope(DD) 3587.2 4.897 Curve(DDS) 18.05 Load = 58.17 MBtu	Load = 3.9/ MBt
rtment P	ating Loa	a Component Delta Compon tu) (KBtu) (MBtu) (KB	(/sf) Wall (/s 0.00 27.86 R-0 .000 25. 2.02 7.82 R-11 -4.29 11. 3.51 5.34 R-11 -4.90 9. 4.01 4.50 R-13 -5.58 7. 4.01 4.50 R-19 -5.92 6. 5.10 2.69 R-34 -6.84 3.	5.43 2.15 5.64 1.79 5.64 1.79 Slope(DD) 4420. 5) -26.220 Curve(DDS) 44.00. (/ft) Heated Basement (/f	8.14 47.23 R-Ø -6.11 114.8 8.93 21.06 R-5 4ft -7.51 68.2 9.14 14.06 R-5 8ft -7.91 55.0 9.06 16.73 R-10 4ft -7.82 57.8 9.34 7.06 R-10 8ft -8.38 39.3 t -12.030 Intercept .00 5858.81 Slope(DD) 3959.5 5) -52.566 Curve(DDS) -27.15	ement (/sf) Grawl (/sf	.11 5.74 R-0 .000 15.9 .61 1.58 R-11 flr -8.13 2.3 .51 .07 R-19 flr -9.49 .1 .1090 R-30 flr -10.31 -1.2 R-3 flr -10.50 -1.5 R-49 flr -11.04 -2.4 .3.609 Intercept -4.58 3740.86 Slope(DD) 4257.6 Curve(DDS) -50.09	n (/sf flr) Window U-value (/sf .00 11.78 1-Pane .00 107.2 4.63 7.92 2-Pane -9.01 44.6 8.78 4.46 3-Pane -11.41 28.0 R-10 -14.22 8.5	F 13.395 Slope(DD) 3587.2 F 4.897 Curve(DDS) 18.05 Base Load = 58.17 MBtu pical Load = 15.99 MBtu	dual Load = 3.97 MBt
O WYEC MApartment P	ating Loa	Component Deita Compon u) (KBtu) (KBtu) (KB	ling (/sf) Wall (/s -10.37 10.58 R-0 .00 25. 1 -12.02 7.82 R-11 -4.29 11. 2 -13.51 5.34 R-13 -5.58 7. 2 -14.01 4.50 R-19 -5.92 6. 8 -15.10 2.69 R-34 -6.84 3.	9 -15.43 2.15 0 -15.64 1.79 pe(DD) 4854.69 Slope(DD) 4420. ve(DDS) -26.220 Curve(DDS) 44.00 b (/ft) Heated Basement (/f	-8.14 47.23 R-0 -6.11 114.8 -8.93 21.06 R-5 4ft -7.51 68.2 -9.14 14.06 R-5 8ft -7.91 55.0 -9.06 16.73 R-10 4ft -7.82 57.8 -9.34 7.06 R-10 8ft -8.38 39.3 Cept -12.030 Intercept .00 (DD) 5858.81 Slope(DD) 3959.5 (DDS) -52.566 Curve(DDS) -27.15	d Basement (/sf) Grawl (/sf	-6.11 5.74 R-0 .00 15.9 -8.61 1.58 R-11 flr -8.13 2.3 -9.51 .07 R-19 flr -9.49 .1 -10.1090 R-30 flr -10.31 -1.2 R-38 flr -10.50 -1.5 R-49 flr -11.04 -2.4 (DD) 3740.86 Slope(DD) 4257.6 (DDS) -373.799 Curve(DDS) -50.09	ation (/sf flr) Window U-value (/sf h .00 11.78 1-Pane .00 107.2 4) -4.63 7.92 2-Pane -9.01 44.6 2) -8.78 4.46 3-Pane -11.41 28.0 R-10 -14.22 8.5	.001ELF 13.395 Slope(DD) 3587.2 .001ELF 4.897 Curve(DDS) 18.05 Base Load = 58.17 MBtu Typical Load = 15.99 MBtu	dual Load = 3.97 MBt
ity MO WYEC MApartment P	ating Loa	eita Component Deita Compon (MBtu) (KBtu) (KB	ing (/sf) Wall (/s -10.37 10.58 R-0 .00 25. -12.02 7.82 R-11 -4.29 11. -13.51 5.34 R-13 -5.58 7. -14.01 4.50 R-19 -5.92 6. -14.01 2.69 R-34 -6.84 3.	-49 -15.43 2.15 -60 -15.64 1.79 lope(DD) 4854.69 Slope(DD) 4420. urve(DDS) -26.220 Curve(DDS) 44.00 lab (/ft) Heated Basement (/f	2ft -8.93 21.06 R-5 4ft -7.51 68.2 4ft -9.14 14.06 R-5 8ft -7.91 55.0 2ft -9.06 16.73 R-10 4ft -7.92 57.8 4ft -9.34 7.06 R-10 8ft -7.82 57.8 ntercept -12.030 Intercept .00 lope(DD) 5858.81 Slope(DD) 3959.5 urve(DDS) -52.566 Curve(DDS) -27.15	Basement (/sf) Crawl (/sf	-6.11 5.74 R-0 .00 15.9 r -8.61 1.58 R-11 flr -8.13 2.3 r -9.51 .07 R-19 flr -9.49 .1 r -10.1090 R-30 flr -10.31 -1.2 R-36 flr -10.50 -1.5 R-49 flr -11.04 -2.458 pe(DD) 3740.86 Slope(DD) 4257.6 ve(DDS) -373.799 Curve(DDS) -50.09	tion (/sf flr) Window U-value (/sf) .00 11.78 1-Pane .00 107.2) -4.63 7.92 2-Pane -9.01 44.6) -8.78 4.46 3-Pane -11.41 28.0 R-10 -14.22 8.5	### Slope(DD) 3587.2 ### Slope(DD) 3587.2 ### Curve(DDS) 18.05 ### Base Load = 58.17 MBtu Typical Load = 15.99 MBtu	esidual Load = 3.97 MBt

	omponent (KBtu)	(/sf) 4.86 2.34	1.56 1.35 1.35 1.35	953.67 -9.237 (/ft)	28.45 25.68 25.19 24.83 22.070 191.14	(/sf)	5.62 5.16 5.16 4.99 4.88 4.78 4.78 623.22 623.22	(/sf) 1.52 .11 .04	-29.Ø1 3.279
_	elta ((MBtu)	9.80	- 3.95 - 4.38 - 64 - 64	e(DD) e(DDS) asement	-3.01 -3.47 -3.55 -3.51 -3.74 -3.74 -6(DD) e(DDS)		.000 .22 .22 04 22 26 38 rcept e(DD) e(DDS)	-value -value 000 20	e(DD) e(DDS) MBtu MBtu MBtu
oling Load	۵	- 6 - 7 -	R-11 R-13 R-13 R-27 R-34	Slope Curve Heated Ba	R-6 R-5 R-5 R-18 R-10 R-10 Inte	Crawi	R-0 R-111 R-130 R-30 R-30 F-110 F-111 R-111 R-111 R-1111 R	Window U 1-Pan 2-Pan 3-Pan R-10	Slop Curv 53.31 = 28.46 = 6.28
Š	nponent (KBtu)	£ 5.	2.62 1.81 1.53 1.16 .93	1660.30 -18.809 (/ft)	-1.25 -3.26 -2.64 -3.24 -920.38	t (/sf)	3.07 4.01 4.13 4.21 4.377 -206.12	(/sf flr) 5.10 3.78 2.35	8.247 -1.380 se Load al Load
	elta Com (MBtu)		-10.10 -11.35 -11.78 -12.36 -12.71 -13.01	• (DD) 1 • (DDS) .	-7.94 -8.23 -8.17 -8.17 -8.14 rcept e(DD)	Ваѕешел	-3.01 -1.56 -1.37 -1.25 -1.25 e(DD) e(DD)	ration ch 48) .00 34) -2.03 22) -4.23	.001ELF .001ELF . Typic Residu
	۵	- 6	R-11 R-22 R-38 R-38 R-38 R-49	Slab Slab	R-6 R-5 R-5 R-5 R-10 R-10 Aft S-10 Aft Cure	Unheated	R-0 R-11 flr R-19 flr R-30 flr Inter Slope	Infiltr ELF Ac. .0007(.4 .0005(.3	Slope/.
	omponent (KBtu)	. o	3.37 2.59 1.60 1.23	552.06 13.261 (/ft)	27.27 14.62 11.78 11.78 7.75 497 768.34	(/sf)	6.62 1.33 .56 .17 .08 18 803 1184.54	(/sf) 34.85 12.99 8.06 2.27	93Ø.87 14.738
	elta ((MBt∪)	5.0	-6.02 -6.90 -7.33 -8.01 -8.43	e (DD) 1 e (DDS) asement	-5.67 -7.77 -8.30 -8.24 -8.91 cept e(DD)		.00 -8.15 -9.33 -9.93 -10.67 -10.47 -10.47 -10.00 e(DD)	U-value000 .ne4.04 .ne -4.95 .ne -6.02	e(DD) e(DDS) MBtu
one scory ating Load	۵	Wa-1 R-0 R-7	R-11 R-13 R-19 R-27 R-34	Slope Curve Heated Ba	R-6 R-5 R-5 8ft R-10 8ft R-10 8ft R-10 Curv	Crawl	R-6 R-11 f- R-19 f-r R-38 f-r R-9 f-r S-00 f-r Cury	Window 1-Pa 3-Pa R-12	Slop Curv 45.64
WIEC U	omponent (KBtu)	4,00	20.00 20.10 11.78 11.34 11.67 1.67	.946.25 .35.618 (/ft)	ω ω ω ω ω ω ω ω ω ω	t (/sf)	2.94 .84 .35 .03 .03 .1095.14	_	4.870 2.598 se Load =
N V	elta C (MBtυ)	و. و. و.	-11.20 -12.59 -13.10 -14.19 -14.52	e(DD) 1 e(DDS) -	-7.48 -8.94 -9.28 -9.13 -9.16 -9.56 occept	Basemen	, 000	ation th (6) .000 (1) -2.46 (1) -4.60	.001ELF .001ELF Base Typica
ake Charle	٥	40 1 1	R-11 R-13 R-13 R-38 R-48 R-48	lop urv de	24 44 44 10 10 10	Unheated	່ ⊣ດຣ ີິິວ	Infiltra ELF Act 0007(.70 0005(.50 0003(.30	Slope/.

Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-Ø .000 4.12 R-7 -1.02 1.97 R-11 -1.17 1.67 R-13 -1.35 1.29 R-19 -1.44 1.10 R-27 -1.58 .80 R-34 -1.67 .62	Slope(DD) 790.90 Curve(DDS) -4.474 Heated Basement (/ft)	R-Ø R-5 4ft -1.17 40.68 R-5 8ft -1.17 40.68 R-10 4ft -1.19 40.18 R-10 8ft -1.19 40.18 Intercept 40.639 Slope(DD) -84.15 Curve(DDS) 4.216	Crawl (/sf)	R-Ø R-11 fir .41 5.35 R-19 fir .36 5.26 R-30 fir .36 5.26 R-38 fir .36 5.26 R-49 fir .36 5.26 Slope(DD) 237.06 Curve(DDS) -63.195	Window U-value (/sf) 1-Pane .00 -6.45 2-Pane .13 -5.55 3-Pane .40 -3.67 R-10 .72 -1.45	Slope(DD) -654.88 Curve(DDS) 15.546 35.72 MBtu 25.85 MBtu 12.82 MBtu
ing Series Two	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 R-1 R-11 R-13 R-19 R-17 R-22 R-38 R-38 R-4 SB R-4 R-4 R-78 R-58 R-58 R-78 R-73 R-69 R-78 R-78 R-78 R-78 R-69 R-76 R-78	Slope(DD) 1304.21 Curve(DDS) 19.491 Slab (/ft)	R-0 R-5 2ft -3.06 -5.07 R-5 4ft -3.02 -5.57 R-10 2ft -3.07 -6.82 R-10 4ft -2.99 -4.82 Intercept .000 Slope(DD) -1737.62 Curve(DDS) 110.972	Unheated Basement (/sf)	R-0 R-11 fir45 3.91 R-19 fir33 4.10 R-30 fir26 4.23 Intercept 4.538 Slope(DD) -408.03 Curve(DDS) 19.005	Infiltration (/sf flr) ELF Ach .0007(.51) .000 4.13 .0005(.37) -1.48 2.90 .0003(.22) -2.91 1.71	Slope/.001ELF 5.542 Curve/.001ELF .521 Base Load = Typical Load = Residual Load =
Mid Town Prototype Sid eating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 R-7 -2.23 3.27 R-11 -2.55 2.60 R-13 -2.87 1.92 R-19 -3.03 1.59 R-27 -3.24 1.15 R-34 -3.37 .88	Slope(DD) 1034.78 Curve(DDS) 82.453 Heated Basement (/ft)	R-Ø -2.66 24.56 R-5 4ft -3.22 10.56 R-5 8ft -3.33 7.81 R-10 4ft -3.31 8.31 R-10 8ft -3.44 5.06 Intercept -122 Slope(DD) 417.16 Curve(DDS) 4.684	Crawl (/sf)	R-0 R-11 flr -2.78 1.44 R-19 flr -3.16 .80 R-30 flr -3.35 .49 R-38 flr -3.35 .49 R-49 flr -3.51 .22 Intercept -2.27 Slope(DD) 916.50 Curve(DDS) 62.697	1-Pane .00 28.40 2-Pane -2.74 9.37 3-Pane -3.26 5.73 R-10 -3.88 1.45	Slope(DD) 572.59 Curve(DDS) 19.065 = 20.49 MBtu = 7.52 MBtu
Lake Charles LA WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 10.58 R-7 -4.04 3.84 R-11 -4.69 2.77 R-19 -5.27 1.80 R-22 -5.47 1.51 R-36 -5.68 1.12 R-49 -5.92 .88 R-49 -5.99 .60	Slope(DD) 1583.70 Curve(DDS) 33.922 Slab (/ft)	R-0 R-5 2ft -3.19 11.31 R-5 4ft -3.53 2.81 R-10 2ft -3.51 3.31 R-10 4ft -3.57 1.81 Intercept .000 Slope(DD) 291.60 Curve(DDS) 56.640	Unheated Basement (/sf)	R-0 -2.66 1.64 R-11 flr -3.33 .52 R-19 flr -3.50 .24 R-30 flr -3.61 .05 Intercept429 Slope(DD) 651.41 Curve(DDS) -48.470	Infiltration (/sf flr) ELF Ach .0007(.71) .00 3.11 .0005(.51) -1.68 1.71 .0003(.30) -2.87 .72	Slope/.001ELF .875 Curve/.001ELF 5.104 Base Load = Typical Load = Residual Load =

	omponent (KBtu)	(/sf) 4.04 4.04 1.87 1.20 1.20 1.20 1.51	717.66 6.301 (/ft)	52.77 49.10 48.27 47.77 47.94 47.609 -12.87	(/sf)	3.93 4.86 4.75 4.60 4.50 4.52 4.254 574.16	-3.54 -3.68 -2.45 -1.01	-456.52 12.212
ing Load	Delta Con (MBtu)	Wall R-0 R-769 R-1178 R-1396 R-27 - 1.05 R-34 -1.10	Slope(DD) Curve(DDS) leated Basement	-0 - 78 -5 4ft - 89 -10 4ft - 91 -10 4ft - 93 -10 8ft - 93 Slope(DD) Curve(DDS)	- we -	-0 -11 flr .56 -19 flr .49 -30 flr .42 -49 flr .35 Intercept .35 Slope(DD) Curve(DDS) -	/indow U-value . 1-Pane	Slope(DD) Curve(DDS) 93.65 MBtu 24.81 MBtu 11.08 MBtu
Series Two Cooli	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 8.57 R-1 -3.23 3.18 R-11 -3.75 2.32 R-19 -4.21 1.55 R-22 -4.36 1.30 R-30 -4.56 .97 R-30 -4.57 .77 R-49 -4.77 .62	Slope(DD) 1388.55 Curve(DDS) 9.499 Slab (/ft) H	R-0 R-5 2ft -2.3606 R-5 4ft -2.3723 R-10 2ft -2.3723 R-10 4ft -2.3723 R10 e(DD) -133.00 Slope(DD) -133.00 Curve(DDS) 18.044	Unheated Basement (/sf) C	R-0 R-11 flr20 3.60 R R-19 flr11 3.74 R R-30 flr06 3.84 R Intercept 4.055 Slope(DD) -275.47 Curve(DDS)161	Infiltration (/sf flr) W ELF Ach .0007(.48) .00 4.36 .0005(.37) -1.49 3.12 .0003(.22) -2.99 1.88	Slope/.001ELF 6.271 Curve/.001ELF052 Base Load = Typical Load = Residual Load =
MApartment Prototype Siding Heating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 7.65 R-7 -1.49 2.94 R-11 -1.70 2.27 R-13 -1.90 1.65 R-19 -2.00 1.34 R-27 -2.12 .96 R-34 -2.20 .73	Slope(DD) 817.94 Curve(DDS) 112.456 Heated Basement (/ft)	R-0 R-5 4ft -3.63 6.66 R-5 8ft -3.73 3.49 R-10 8ft -3.77 2.16 R-10 8ft -3.77 2.16 Slope(DD) 2.027 Slope(DD) 13.858	Crawl (/sf)	R-0 R-11 flr -2.98 1.41 R-19 flr -3.38 .74 R-3Ø flr -3.55 .47 R-49 flr -3.59 .41 R-49 flr -3.69 .41 R-49 flr -3.69 .23 R-49 flr -3.69 .23 R-40 flr -3.69 .23 Curve(DDS) 834.64) Window U-value (/sf) 1-Pane .00 27.33 2-Pane -2.76 8.17 3-Pane -3.23 4.93 R-10 -3.78 1.12	Slope(DD) 420.61 Curve(DDS) 23.286 = 19.38 MBtu = 6.86 MBtu
Lake Charles LA WYEC He	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 10.72 R-1 -4.15 3.81 R-11 -4.81 2.71 R-12 -5.67 1.72 R-22 -5.57 1.44 R-38 -5.93 .83 R-49 -6.03 .67 R-60 -6.09 .57	Slope(DD) 1486.40 Curve(DDS) 54.392 Slab (/ft)	R-0 -3.50 10.99 R-5 2ft -3.72 3.49 R-5 4ft -3.77 1.99 R-10 2ft -3.75 2.49 R-10 4ft -3.60 1.16 Intercept .000 Slope(DD) 38.30 Curve(DDS) 75.868	Unheated Basement (/sf)	R-0 R-11 flr -3.68 .25 R-19 flr -3.80 .04 R-30 flr -3.8809 Intercept437 Slope(DD) 462.14 Curve(DDS) -29.451	Infiltration (/sf flr ELF Ach .0007(.71) .00 2.92 .0005(.50) -1.69 1.52 .0003(.30) -2.83 .57	Siope/.001ELF .166 Curve/.001ELF 5.729 Base Load Typical Load Residual Load

	ooling Load	Delta Component (MBtu) (KBtu)		``	2.6 03. 7- 7 -7 1 4 F	-11 -5.95 3.9	-13 -6.90 3.0	-19 -7.37 2.6	-27 -8.19 1.9	-34 -8.69 1.4		Slope(DD) 1925.31 Curve(DDS) -39.535	Heated Basement (/ft)		-6 -5.75 40.6	T -7.36 30.9	-10 4ft7 83 09 1	-10 8ft -8.23 25.7	Intercept Slope (DD)	#s/)		-00. -11 () - 11 () -	-19 fir -3.87 5.6	R-30 fir -4.46 5.22 R-38 fir -4.59 5.14	-49 flr -4.98 4.8	4.28 1281.0	urve(DDS) -104.05	Window U-value (/sf)	1 00 00 00 00 00 00 00 00 00 00 00 00 00	-Pane - 7 15 11 1	2.89	Slope(DD) 1Ø12.24 Curve(DDS) -5 701		69.53 Mbtu 31.52 MBtu 2.66 MBtu
ding Series Two	· G	Delta Component (MBtu) (KBtu)		-6 15.5	-7 -14.47 6.1	-11 -16.78 4.6	-19 -18.86 3.3	-22 -19.64 2.8	-38 -20.18 2.1 -38 -51 33 1 7	R-49 -21:91 1:36	-60 -22.28 1.1	Slope(DD) 3118.09 Curve(DDS) -82.404	Slab (/ft)	5	-5 2ft -11 50 c	ft -11.66	-10 2ft -11.74 4	-10 4ft -11.92 3	Cept (DD) 144 (DDS) -58	ement (/	-0 -5 75 4 2	-11 flr -5.51 4.5	R-19 flr -5.64 4.46	-30.11 -5.12 4.4	40000	Slope(DD) 268.87	urve(DDS) -46.21	=	Ach (.69) .88 3.5	5(.49)	ØØ3(.29) -3.19 1.5	Slope/.001ELF 4.935 Curve/.001ELF .244	7 - 7	Dase Load = Typical Load = Residual Load =
One Story Prototype Sic	Heating Load	Delta Component (MBtu) (KBtu)	+=//	9	-7 -7.39 5.6	-11 -8.44 4.7	13 19.76 3.5	-19 -10.32 3.60 -77 -11.54 5.5	-34 -11.80 1.7			Slope(DD) 2146.02 Curve(DDS) 23.353	Heated Basement (/ft)	-0 -7.51 46 1	-5 4ft -10.69 26.9	8ft -11.34 23.0	-10 4ft -11.46 22.3	-10 8ft -12.22 17.7		Grawl (/sf)	8.6 00.	-11 fir -11.74 2.2	-19 flr -13.55 1.0 -30 flr -14.43 4	R-38 flr -14.63 .35 R-40 flr 11 01	Intercept -1.01	oe (DD) 1834.4	urve(UUS) 55.51	Window U-value (/sf)	-Pane .00 48.3	-Pane -5.75 17.2	S-rane -6.9/ 10.64 R-10 -8.40 2.89	Slope(DD) 1171.48 Curve(DDS) 24.996	64.86 MB	21 2
Las Vegas NV WYEC		Delta Component (MBtu) (KBtu)	eiling (/sf	-6 .60 14.5	-/ -13.61 5.7	-11 -10./8 4.3	- 10 - 11:14 5:0 -22 - 18 47 0 R	-30 -19.44 1.9	-38 -20.03 1.5	R-49 -20.52 1.23	-00 -20.83 1.0	 ->	Slab (/ft)	-0 -12.05 18.7	-5 2ft -13.89 7.6	4ft -14.19 5.8	-10 ZTC -14.23 5.6	10 4 C - 14:55 3:7	e(DD) 1001 e(DDS) 121.	Unheated Basement (/sf)	-0 -7.51 4.9	-11 flr -12.58 1.6	R-30 fir -14.69 .31		ntercept -1.10	Slope(DD) 1910.40 Curve(DDS) -141 412	******* (222)	Infiltration (/sf flr) ELF Ach	(.71) .00 6.	(.55) -3.42 4.6	7:7 75:0- (10:)	Siope/.001ELF 6.039 Curve/.001ELF 4.221	Base Load	Typical Load = Residual Load =

		component (KBtu)	(/sf) 9.83 4.93 3.30	ω <i>σ</i> ο σο	2083.23 -47.461 (/ft)	57.95 445.76 42.95 42.95 33.995 31.944 44.265	(/sf)	7.86 6.08 6.08 5.21 5.21 6.13 4.293 1264.10	(/sf) 21.45 10.27 6.54 2.15	922.27 -4.155	
	٦	Delta Cor (MBtu)	. 60 -2.34 -2.67	- 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	e(DD) e(DDS) asement	-2.36 -2.85 -2.92 -2.98 -2.98 rcept e(DD)		.08 -1.93 -1.55 -1.68 -1.74 -1.74 -(DD)	-value .00 -1.61 -2.15	(SQQ) • (DDS)	MBtu MBtu MBtu
	Cooling Load	_	-07-11	1 1 1	Slope Curve	R-6 4ft R-5 4ft R-10 8ft R-10 8ft Slope Curve	Crawl	R-6 R-11 R-10 R-10 R-30 FL R-30 FL R-49 FL S-49 FL Curve	Window U. 1-Pane 2-Pane 3-Pane R-10	Slope	42.49 26.28 8.25
	Coo	(KBtu)	£ 4 4 0 4	2.24 2.24 1.81 1.42 1.16	41.08 9.696 (/ft)	5.45 3.20 2.95 2.45 1.95 47.97	(/sf) (3.86 4.23 4.24 4.25 4.25 19.995	3.33 2.31 1.34	4.250	Coad = Load = Load =
1 ₩0		(MBtu) (H	9.00.7	-8.68 -8.50 -9.00	(00) (008) -7	-4.46 -4.55 -4.56 -4.60 (00) (DD)	Basement	-2.36 -2.14 -2.13 -2.13 -2.13 -2.00)	tion (/ .000) -1.23) -2.39	.001ELF .001ELF	Base Typical Residua
Series		۵	6 1 1 1 - 7 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. R R R R R	Slope Curve Slab	-6 2ft -15 2ft -16 2ft -10 2ft -10 Aft Slope Curve	Unheated	-0 -11 fr -19 fr -30 fr Inter Slope Curve	Infiltrat ELF Ach 0007(.69) 0005(.49) 0003(.29)	Slope/.Ø Curve/.Ø	
ding						0-00-000 CCCCC	٠ •			7 9	
/pe Si		omponent (KBtu)	(/sf) 11.27 4.62 3.68	- 0.00	1454.01 119.411 (/ft)	25.47 22.22.22 21.72 21.73 18.41 111.333 650.46	(/sf)	9.0 2.36 1.4 1.4 1.8 1.5 1.7 1.1 1.3 1.7 1.7 1.7 1.8 1.3 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	39.4 12.5(7.6)	726.5	
Prototype		elta Cor (MBtu)		-4.31 -4.60 -4.78	(DD) (DDS) sement	-3.54 -4.39 -4.52 -4.67 -4.67 copt (DD) (DDS)			value 000 -3.87 -4.58	(SQQ) (DDS)	Btr Btr
Town	ing Load	ă	W W B B B B B B B B B B B B B B B B B B	R - 13 R - 13 R - 37	Slope Curve		rawi		indow U- 1-Pane 2-Pane 3-Pane R-10	Slope	29.33 M 10.58 M 5.11 M
¥.	Heati	ent tu)		00000000000000000000000000000000000000	.66 327 ft) H	97 897 8000 8000 87 87 87 87	sf) C	375 RR RR RR 375 RR	flr) W .15 .18	458 813	11 11 11 0 0 0 0 0 0
WYEC		mpon (KB	(/ 30 15 77 5 89 4	252 77 111 111 11 1 147 11 1	2323. 39.3 (/f	89 12 25 3 29 2 30 2 35 1 147	ment (/	54 3 63 1 12 12 1162 93.	(/sf .øø 4 .36 2	7.	Base Lical L
N N		Delta Co (MBtu)	ing -5.		(00) (008)	t -5. t -5. t -5. t -5. ve(DD)	d Basem	flr -4. flr -4. flr -5. flr -5.	ation (7) (2) (3) (3)	.001ELF .001ELF	Typ Resi
Las Vega			0	*	Slope Curve Slab	R-6 R-5 2ft R-5 2ft R-10 2ft R-10 4ft Inte	Unheated	R-0 R-11 flr R-19 flr R-3Ø flr Inte	Infiltra ELF Acl .0007(.7. .0005(.5.	Slope/ Curve/	

		omponent (KBtu)	(/sf) 9.71 4.86 4.18	2.7 2.8 1.5 1.5 2005.1	37.07 (/ft	55.73 41.90 39.56 38.06 35.06 25.462 1047.02	(/sf)	6.67 5.04 4.57 4.20 4.12 3.38 3.38 3.38 112,8.68	(/sf) 22.77 10.93 6.96 2.29	983.67 -4.584	
	pe	Delta Co (MBtu)	111	-2.5 -2.5 -2.5 •(DD)	0 0	-2.33 -2.74 -2.81 -2.86 -2.95 rcept e(DD) e(DDS)		08 98 -1.26 -1.48 -1.53 -1.67 -1.67 -(0D)	-value e		Btu Btu
	Cooling Loa		Wa R-0 R-11	177	ם כ	R-6 R-5 8ft R-10 4ft R-10 8ft Inte Slop Curv	Crawi	R-6 R-11 flr R-13 flr R-30 flr R-49 flr Slope Curve	Window U. 1-Pane 2-Pane 3-Pane R-10	Slop	24.24 24.24 6.57 M
	ပိ	nponent (KBtu)	(/sf) 17.47 6.98 5.30 3.80	84. 84. 1	01.40 (/ft	6.73 3.40 2.89 2.39 1.89 .000 635.96	(/sf)	3.28 3.28 3.22 3.24 3.242 8.34 18.935	(/sf flr) 3.34 2.31 1.34	4.229	Load II II
s Two		Deita Com (MBtu)	8.3.9 8.3.9	8.8- 19.80- 19.30- 19.7- 19.7-	ا آھ	-3.88 -3.98 -3.92 -3.93 -3.95 -3.95 -3.95 e(DD)	Basement	-2.33 -2.07 -2.07 -2.06 -2.06 (DD) (DD)	ion .000 -1.24 -2.40	OIELF OIELF Bac	Typica Residua
Series		_		- 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ur v	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter S-0Pe	Unheated	R-11 flr R-13 flr R-3Ø flr Interc Sloped	Infiltrat ELF Ach .0007(.69) .0005(.49) .0003(.29)	Slope/.Ø Curve/.Ø	
e Siding		(KBtu)	(/sf) 11.09 4.33 3.36 2.43	2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	5.51 (/ft	22.17 22.17 18.17 17.67 14.17 6.994 6.930	(/sf)	9.63 2.30 1.28 84 45 324 67.83	(/sf) 38.16 10.66 6.36 1.32	73.11 6.827	
: Prototyp	_	elta Comp (MBtu) (.00 -2.14 -2.45	-2.8 -3.9 (00)	(DUS) 1 Sement	-4.30 -5.11 -5.23 -5.25 -5.35 cept (DD) 5		.00 -4.40 -5.01 -5.27 -5.33 -5.50 -5.50 (DD) 13	. 000 -3.96 -4.58	DD) 4 DDS) 3	Btr Btr
MApartment	ating Load	۵	Wall R-0° R-11 R-13	-19 -27 -34 -0p	ם כ	R-6 R-5 8ft R-5 8ft R-10 8ft Inter Slope Curve	Crawl	R-0 R-11 flr R-19 flr R-30 flr R-49 flr Inter Slope Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve	9.66 MB 5.56 MB
WYEC N	Неа	omponent (KBtu)	(/sf) 15.43 5.49 3.90 2.48	2 1 1 145	/.1/ (/ft	14.5 2.6 2.6 1.3 1.3 2.3 6 6 7 8 2.5 9	(/sf)	2.46 .93 .55 .31 335 867.69	3.85 1.87 .60	625 8.750 Load	l l l l l l l l l l l l l l l l l l l
≥		Delta Com (MBtu)	0.0.0.	-8.02 -8.34 -8.54 -8.68 -8.77 -8.77	(600)	-5.34 -5.65 -5.70 -5.70 -5.74 rcept e(DD)	Basement	-4.30 -5.22 -5.44 -5.59 -5.69 (DD)	tion (/	Ø1ELF Ø1ELF Bas	Typica Residua
Las Vega				- 1388 - 1388 - 689 - 689	lab	R-0 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter Slope	Unheated	R-0 R-11 fr R-19 fr R-30 fr Interc Slope	Infiltra ELF Ach .0007(.77) .0005(.52) .0003(.33)	Slope/.Ø Curve/.Ø	

						•		
	Component (KBtu)	(/sf) .79 .36 .38 .28 .18	184.09 -6.835 (/ft)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(/st)	. 47 . 91 . 97 . 99 . 1.00 1.039 -58.36	(/sf) 18 .10 .07	19.97 -1.008
	Delta Con (MBtu)		e(DD) e(DDS) asement	98 94 94 93 93 (DD) (DD)		. 68 . 68 . 77 . 73 . 79 . 80 . 80 (DD) (DD)	ev lee 80.00.00.00.00.00.00.00.00.00.00.00.00.0	e(DD) e(DDS) MBtu MBtu MBtu
ing Load	۵	X X X X X X X X X X X X X X X X X X X	Slope Curve	-6 -5 4ft -5 8ft -10 4ft -10 8ft Inter Slope Curve	- X & L	0 11 flr 19 flr 30 flr 38 flr 49 flr Intercept Slope(DD) Curve(DDS	indow U-v	Slope Curve 6.60 ME 1.71 ME 52 ME
Cooling			ž	ىد بىد بىد بىد م	Ū	፞፞፞፞፞፞፞፞፞፞፞፞፟፠፟ዹፙፙፙ	≯	4 11 11
ŭ	component (KBtu)	(s t) 2 (s t	182.02 39.389 (/ft)	262.	: (/st)	17 29 42 50 50 308.61	(/sf fir) 01 .01 .01	162 162 164
	٥٥	9.0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	_	.04 .04 .03 .02	ement	.98 .08 .085	8.89 8.84	ELF Bas Typica
1 ¥0	elta Co (MBtu)	0	(S00) (S00)	-11 -11 -11 -11 -11 -11 -11 -11 -11 -11	e S		. <u>.</u>	JELF JELF Typ Resi
er: es	۵	9099100	6 6	<pre></pre>	B P	f r -	trat Ach .56) .40)	7.001E
Ser		0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S S I a	CNIBB	eate	Ind Sicur		lope/ urve/
				8888 	L'h	7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Inf: ELF: 0007 00005	20
 g u								
Pis	£ 🕤	sf) 87 87 87 19 19 19 17	.46 403 ft)		Ç	3	f) 38 33 57 16	38
•	Component (KBtu)	8. 6. 8. 8. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	391. 82.4 (/f	26. 13. 10. 11. 8. 3.1 1.2	<u>\$</u>	. 1	33. 9. 5.	31.9
oty	Comp	238 238 238 248 258 258 278 278	~	.13 .18 .65 .65 .65		. 68 . 69 . 11 . 21 . 49	041 0824 0824	• • • • • • • • • • • • • • • • • • • •
Prototype	(MBtu)	97.89.00	e(DD) e(DDS) asement	-4. -6. -6. -6. -7. -7. -7. -6. -7. -6. -6. -6. -6. -6. -6. -6. -6. -6. -6		-9. -11. -11. -11. (00) (00S)	2 . 4	(00) (00s) 8tu 8tu 8tu 8tu
70		- 118674	lope (DD) urve (DDS) d Basemer	ft ft the ope cope cope cope cope cope cope cope		ffr ffr ffr nterc lope(C	U - V - V - V - V - V - V - V - V - V -	00 >>>
Story g Loa		XX X X X X X X X X X X X X X X X X X X	Sto	4 0 4 0 1 2 3	-	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	indo 2011 × 3011 P	Slop Curve 8.89 1 5.49 1 7.29 1
⊑			Heat	7777 1115 1116 110	Craw	RR-11 RR-11 R-11 R-11 R-11 R-11 R-11 R-	×	4 1
One Heat							÷.	11 11 11
2:	ant 3tu)	/sf) 3.07 3.07 5.05 2.05 2.21 1.65 1.31 1.06	3.17 .995 /ft)	6.83 5.93 7.603 7.603 7.603 7.603 7.603 7.603	/sf)	2.81 .05 49 84 .715 0.68	f fl 3.65 1.46	. 194 . 793 Load Load
WYE	отроп (КВ) 1	2400	1 64	nt (-1 115 -52	s/)	s
5	ပိုင္သ		S)	5.67 7.48 7.80 7.71 8.03	өшө	4.13 8.38 9.22 9.76 9.76 (\$)		F Ba
w	(MBtu)	0 1112 1188 1188 1188	<u> </u>	-5 -7 -7 -7 -7 -7 (00) (00)	Base	- · · · · · · · · · · · · · · · · · · ·	; · · · · · · · · · · · · · · · · · · ·	.øølELI .øølELI Tyj Res
Angele	۵		lope urve lab	24 42 42 44 44 44 46 46 46 46 46 46 46 46 46 46	ted	++	Ach (.63 (.28	00
v			รีบ ร	118 118 C	nea.	111 119 38 18 0	Inf: ELF 0007 0005	9.7
٦			•	~ ~ ~ ~ ~	5	~ ~ ~ ~	⊷m <i>@`@`@</i>	w O

		Component (KBtu)	(sf) 1.11 .59 .39 .39 .25	260.92 -10.200 (/ft)	-3.3 -2.6 -2.6 -1.8 -1.8 -1.8 -2.27	. 28 1.03 1.11 1.11 1.18 1.18 1.21 1.25 1.25 1.25 1.33	(/sf) -6.81 -4.38 -2.85 -1.05	464.80 7.830
	סד	Delta Co (MBtu)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	(DD) (DDS) sement	30 27 27 26 24 24 (DD) -(DD)	.000 .45 .50 .53 .54 .54 .56 (DD) –	value . 98 . 35 . 57	e (DD) - e (DDS) - MBtu MBtu MBtu
	Cooling Loa	_	X X X X X X X X X X X X X X X X X X X	Slope Curve Heated Ba	90011	R-11 flr R-13 flr R-38 flr R-49 flr R-49 flr R-40 flr Slope Curve	Window U 1-Pane 2-Pane 3-Pane R-10	Slope Curve 5.08 M 3.23 M 4.67 M
•	ő	(KBtu)	(/sf) 3.86 1.71 1.38 1.08 1.08 7.70 7.70 7.56 .56	1052.05 -69.429 (/ft)	-4.8 -3.33 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1	. 53 . 53 . 64 . 71 . 872 205.23	-2.24 -1.92 -1.35	-5.458 3.229 - Load = Load = =
s Two		Delta Cor (MBtu)	ing -1.25 -1.25 -1.45 -1.63 -1.63 -1.86 -1.94 -2.01	(SQQ) • (DDS)	3 2 2 2 3 (DD) (DD)	I fir .15 3 fir .22 3 fir .22 1 fir .22 2 fir .26 3 for .26 2 for .26 Curve(DD) -3 Curve(DDS) -3	. 66 . 38 1.67	.001ELF .001ELF Base Typica Residua
Series			C	Slop Curv	2ft 2ft 2nt Soop		Infiltrat ELF Ach .0007(.56) .0005(.40) .0003(.24)	Slope/.6 Curve/.6
pe Siding		ponent (KBtu)	(,sf) 7.95 2.92 2.92 1.61 1.61 67	741.48 36.948 (/ft)	27.81 16.31 14.06 12.06 7.68 2.680	1	(/sf) 23.51 7.82 4.79	83.65 5.419
Prototype	סר	Delta Com (MBtu)	.00 -2.40 -2.74 -3.02 -3.16 -3.35	(DD) (DDS) 1 sement	-1.98 -2.36 -2.45 -2.43 -2.53 (DD) (DD)	.00 r -2.76 r -3.06 r -3.21 r -3.25 r -3.35 r -3.35 r -4.05) 6	. 00 -2.26 -2.70 -3.21	(DD) 4 (DDS) 1 Btu Btu Btu
Mid Town	ating Load		Wall R-0 R-1 R-11 R-13 R-27 R-34	Slope Curve Heated Ba	R-6 R-5 8ft R-10 8ft R-10 8ft Inter Slope Curve	1111 4 4 8 8 8 4 4 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	Window U- 1-Pane 2-Pane 3-Pane R-10	S-ope Curve 19.37 M 5.99 M 6.94 M
WYEC	H	omponent (KBtu)	(/sf) 12.66 4.33 3.01 1.81 1.12 1.12 1.12 70	1521.14 103.639 (/ft)	11.81 5.06 3.81 4.06 2.56 .000 834.51 38.524	1.8 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	(/sf flr) 1.81 .71	-1.500 5.834 6 Load ::
Angeles CA		Delta Cor (MBtu)	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	ope(DD) 1 rve(DDS) 1 ab	t -2.54 t -2.86 t -2.85 t -2.91 percept pe(DD) ve(DD)	-1.90 -2.74 -2.74 -2.95 -3.09 ercept pe(DD)	ch ch 66) .00 45) -1.32 26) -2.08	7.001ELF 7.001ELF Typica Residua
Los Ang				S. Cur	R-6 R-5 24 R-10 24 R-10 24 R-10 44 S-0 Cur	905 700	Infilt ELF A .0007(. .0005(.	Slope/ Curve/

Load	Delta Component (MBtu) (KBtu)	R-0 .96 .96 R-7 -15 .49 R-11 -22 .27 R-19 -26 .18 R-34 -25 .17 R-34 .26 R-34 .26 .17	Slope(DD) 182.39 Curve(DDS)815 ed Basement (/ft)	4ft19 -4.27 8ft19 -4.77 4ft19 -4.77 8ft19 -4.77 8ft18 -4.44 Intercept -3.674 Slope(DD) -103.45 Curve(DDS) 2.312	(/sf)	fir .15 .32 fir .22 .44 fir .25 .56 .56 fir .28 .54 .54 fir .28 .54 .54 .54 .55 .50 .50 .50 .50 .50 .50 .50 .50 .50	ow U-value (/sf) -Pane .00 -3.71 -Pane .21 -2.22 -Pane .33 -1.44 -10 .4652	Slope(DD) -227.12 Curve(DDS) 3.279 .83 MBtu .99 MBtu .80 MBtu
Cooling	Component u) (KBtu)	(/sf) 27 3.57 27 1.46 .47 1.12 .65 .82 .81 .55 .86 .46 .94 .34	783.58) -30.612 (/ft) Heat	122 -5.77 R-6 19 -4.94 R-5 115 -3.61 R-5 119 -4.77 R-10 14 -3.27 R-10 -1397.61	ement (/sf) Craw	.1721 R-0 .0705 R-11 .00 .07 R-19 .04 .14 R-36 .849 .368315.10	n (/sf flr) Wind .0084 1 .1769 2 .4447 R	ELF -1.854 ELF .938 Base Load = 3 Typical Load = 1 esidual Load = 1
ing Series Two	Delta (MBti	C e i i ng R - 0 R - 1 R - 11 R - 19 R - 22 R - 38 R - 38 R - 49 R - 49 R - 49 R - 60 R - 11	Slope(DD) Curve(DDS Slab	R-6 R-5 2ft - R-10 2ft - R-10 4ft - Intercept Slope(DD) Curve(DDS)	Unheated Base	R-11 flr R-19 flr R-3Ø flr Slope(DD) Curve(DDS)	Infiltration ELF Ach .0007(.56) .0005(.40) .0003(.24)	Slope/.001El Curve/.001El
Prototype Sidi	ta Component 3tu) (KBtu)	.00 7.33 -1.56 2.42 -1.78 1.72 -1.94 1.21 -2.02 .96 -2.12 .65	DD) 441.06 DDS) 171.445 ement (/ft)	-2.66 21.98 -3.12 6.65 -3.18 4.65 -3.16 5.15 -3.24 2.65 cept220 (DD) 212.66	(/sf)	.00 5.53 -3.20 .20 -3.4217 -3.5538 -3.5743 -3.66646 bt 182.00 DS) 199.446	lue (/sf) .00 21.13 -2.11 6.47 -2.48 3.92 -2.91 .92	D) 349.71 DS) 17.064
MApartment Pr eating Load	Delt. (MB	₩ ₩ ₩ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽	Slope(DD) Curve(DDS) Heated Basemen	R-8 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Interce Slope(D)	Crawl	R-10 flr R-30 flr R-30 flr R-49 f	.) Window U-va 1-Pane 2-Pane 3-Pane R-10	Slope(DD) Curve(DDS) = 17.76 MBtu = 4.97 MBtu = 7.55 MBtu
os Angeles CA WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 12-41 R-1 -5.02 4.04 R-11 -5.82 2.71 R-19 -6.54 1.51 R-22 -6.69 1.25 R-30 -6.90 .71 R-39 -7.11 .56 R-60 -7.11 .56	Slope(DD) 1191.69 Curve(DDS) 151.959 Slab (/ft)	2ft -3.23 2: 2ft -3.26 1: 2ft -3.25 2: 4ft -3.29 : ntercept .0 lope(DD) 66. urve(DDS) 113.7	Unheated Basement (/sf)	R-0 R-11 flr -3.3201 R-19 flr -3.4522 R-30 flr -3.5335 Intercept679 Slope(DD) 429.56 Curve(DDS) -16.155	Infiltration (/sf flr ELF Ach 0005(.66) .00 1.33 0005(.45) -1.24 .30 0003(.26) -1.8622	Slope/.001ELF -2.688 Curve/.001ELF 6.563 Base Load Typical Load Residual Load

	omponent (KBtu)	(/sf) 3.65 1.85 1.59 1.21 1.01	775.83 -18.978 (/ft)	-17.82 -18.67 -18.48 -18.91 -18.67 -18.255 -50.26	(/sf)	17 10 09 06 06 05 000 000 000	(/sf) 2.71 1.14 .72	92.26
ng Load	Delta Co (MBtu)	Wall R-0 R-7 -2.00 R-11 -2.28 R-13 -2.71 R-19 -2.93 R-27 -3.21	Slope(DD) Curve(DDS) ated Basement	6 4ft -2.70 5 8ft -2.81 10 4ft -2.81 10 8ft -2.88 Intercept Slope(DD) Curve(DDS)	- m	1 flr .41 9 flr .39 7 flr .38 8 flr .35 1 flr .35 Slope(DD) Curve(DDS)	1-Pane .000 2-Pane .29 3-Pane37 R-1046	Slope(DD) Curve(DDS) 1.60 MBtu 9.95 MBtu
Cooling	Component) (KBtu)	(/sf) 34 3.16 51 2.40 56 1.72 96 1.14 60 1.11 12 .70 32 .58	1606.92 -45.560 (/ft) Hea	11 -26.32 R-8 80 -24.45 R-6 66 -23.61 R-6 74 -24.09 R-1 56 -23.00 R-1 -20.700 -558.27	ant (/sf) Cra	21	(/sf flr) Win 30 .50 22 .36 14 .21	.714 .000 .000
Series Two	Delta C (MBtu)	Ceiling R-6 R-7 R-11 -8: R-19 -9: R-30 -10: R-49 -11: R-49 -11:	Slope(DD) Curve(DDS) Slab	R-6 R-5 R-5 R-5 R-10 R-10 R-10 Aft -3 Intercept Slope(DD) Curve(DDS)	Unheated Baseme	R-0 R-11 flr -1.2 R-19 flr8 R-3Ø flr6 Intercept Slope(DD) Curve(DDS)	Infiltration ELF Ach .0007(.43) .0 .0005(.30)2 .0003(.18)4	Slope/.001ELF Curve/.001ELF Typi
One Story Prototype Siding Heating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-1 R-11 -16.77 10.53 R-13 -19.40 8.20 R-19 -20.70 7.04 R-27 -22.86 5.12 R-34 -24.18 3.94	Slope(DD) 5077.75 Curve(DDS) -63.974 Heated Basement (/ft)	R-0 R-5 4ft -10.12 134.75 R-5 8ft -12.07 123.00 R-10 4ft -11.35 127.34 R-10 8ft -14.29 109.63 Intercept 71.868 Slope(DD) 3672.53 Curve(DDS) -36.189	Crawl (/sf)	R-0 R-11 fir -21.10 7.40 R-19 fir -24.76 5.02 R-38 fir -27.01 3.56 R-49 fir -29.00 2.27 Intercept .000 Slope(DD) 4586.68 Curve(DDS) -92.157	Window U-value (/sf) 1-Pane .00 98.22 2-Pane -9.75 45.46 3-Pane -12.82 28.85 R-10 -16.43 9.31	Slope(DD) 3982.07 Curve(DDS) -9.913 125.13 MBtu 48.34 MBtu -4.54 MBtu
Medford OR WYEC O	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 28.06 R-7 -25.80 11.30 R-11 -29.92 8.63 R-19 -33.62 6.22 R-22 -35.10 5.27 R-38 -38.27 3.21 R-49 -39.29 2.55 R-60 -39.94 2.12	Slope(DD) 5830.59 Curve(DDS) -185.269 Slab (/ft) 1	R-0 -10.14 134.63 R-5 2ft -15.19 104.21 R-5 4ft -16.87 94.09 IR-10 2ft -16.05 99.03 IR-10 4ft -18.31 85.41 Intercept 58.895 Slope(DD) 7296.29 Curve(DDS) -108.274	Unheated Basement (/sf)	R-0 R-11 fir -19.24 8.60 R-19 fir -22.93 6.20 R-30 fir -25.31 4.66 Intercept .542 Slope(DD) 5584.08 Curve(DDS) -442.862	Infiltration (/sf flr) VELF Ach .0007(.58) .00 10.37 .0005(.42) -5.30 6.93 .0003(.26)-10.01 3.87	Slope/.001ELF 11.461 Curve/.001ELF 4.789 Base Load = Typical Load = Residual Load =

	omponent (KBtu)	2 % H H H H H H H H H H H H H H H H H H	812.01 -20.147 (/ft)	-30.46 -30.71 -30.21 -30.71 -29.91 -29.36 -171.25 -2.851 (/sf)		1.60 1.80 .48 .29	1.314
	ooling Load Delta Cor (MBtu)	0.000010.44	Slope(DD) Curve(DDS) . Heated Basement	R-6 R-5 4ft -1.01 R-5 8ft99 R-10 4ft -1.01 R-10 8ft98 Intercept98 Slope(DD) Curve(DDS)	R-0 R-11 flr .17 R-19 flr .19 R-30 flr .20 R-38 flr .20 R-49 flr .20 Slope(DD) Curve(DDS)	Window U-value 1-Pane .00 2-Pane16 3-Pane19 R-1022	Slope (DD) Curve (DDS) 13.28 MBtu 8.62 MBtu 2.91 MBtu
	C mponent (KBtu)	28	1820.31 -78.121 (/ft)	-45.21 -42.71 -42.21 -40.46 -36.636 1123.92 35.502	-2.03 -1.16 93 78 78 380 380 43.183	(/sf flr) .36 .24	. 375 . 208
s Two	Delta Con (MBtu)		e(DD) 1 e(DDS) -	-1.59 -1.44 -1.47 -1.47 -1.40 -(DD) -1 e(DD) -1 Basement	-1.00 -1.00 34 35 25 25 00 00 00 00 00 00 00 0	tion 66	.001ELF .001ELF Bass Typica Residua
ng Serie	_	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S S S S S S S S S S S S S S S S S S S	R-6 R-5 2ft R-5 2ft R-10 2ft R-10 4ft Inter Slope Curve	R-0 R-11 flr R-19 flr R-30 flr Interc	Infiltra ELF Ach .0007(.43) .0005(.30) .0003(.18)	Slope, Curve, .
. P ! S	-, دي						
9	nponent (KBtu)	(/sf) (/sf) 11.51 11.51 9.59 7.37 7.37 8.27 8.27	1392.60 47.308 (/ft)	181.92 142.42 129.17 133.42 115.157 78.157 7457.80 23.980	18.88 6.41 4.31 3.06 2.78 1.96 .000 .000	(/sf) 83.59 33.52 20.98 6.23	21.587
•	elta Com (MBtu)	000 000 000 000 000 000 000 000 000 00	(DD) 4392.6 (DDS) 47.3Ø sement (/ft	-4.05 181.9 -5.63 142.4 -6.16 129.1 -5.99 133.4 -6.72 115.1 cept 78.15 (DD) 3457.8 (DDS) -23.98	.00 18.8 -7.48 6.4 -8.74 4.3 -9.49 3.0 -9.66 2.7 -10.15 1.9 cept .00 (DD) 3914.9	.00 83.5 -7.21 33.5 -9.02 20.9 -11.14 6.2	(00) 2596.2 (00S) 21.58 Btu Btu Btu
Town Prototype	ating Load Delta Com (MBtu)	000 000 000 000 000 000 000 000 000 00	DD) 4392.6 DDS) 47.3Ø ement (/ft	-4.05 181.9 -5.63 142.4 -6.16 129.1 -5.99 133.4 -6.72 115.1 ept 78.15 DD) 3457.8 DDS) -23.98	.00 18.8 -7.48 6.3 -8.74 4.3 -9.49 3.0 -9.66 2.7 10.15 1.9 bt .00 0) 3914.9	Window U-value (/sf 1-Pane .00 83.5 2-Pane -7.21 33.5 3-Pane -9.02 20.9 R-10 -11.14 6.2	Slope(DD) 2596.2 Curve(DDS) 21.58 56.90 MBtu 24.00 MBtu .14 MBtu
Mid Town Prototype	ting Load Delta Com (MBtu)	/sf) Wall (/sf) 9.45	Slope(DD) 4392.6 Curve(DDS) 47.3Ø eated Basement (/ft	-0 -4.05 181.9 -5 4ft -5.63 142.4 -5 8ft -6.16 129.1 -10 4ft -5.99 133.4 -10 8ft -6.72 115.1 Intercept 78.15 Slope(DD) 3457.8 Curve(DDS) -23.98	-0 .00 18.8 -11 flr -7.48 6.4 -19 flr -8.74 4.3 -30 flr -9.68 2.7 -49 flr -10.15 1.9 Intercept .00 Slope(DD) 3914.9 Curve(DDS) -45.53	indow U-value (/sf 1-Pane .00 83.5 2-Pane -7.21 33.5 3-Pane -9.02 20.9 R-10 -11.14 6.2	Slope(DD) 2596.2 Curve(DDS) 21.58 6.90 MBtu 4.00 MBtu .14 MBtu

		omponent (KBtu)	(/sf) 3.57 1.81 1.56 1.19	0.0	761.05 -18.107 (/ft)	-30.99 -31.16 -31.49 -30.99 -30.99 -68.81 1.307	(/sf)	22 	(/sf) 2.41 1.09 .69	93.52 089	
	Cooling Load	Delta Co (MBtu)	Wall R-0 .00 R-756 R-1163 R-1376	-198 -278 -349	Slope(DD) Curve(DDS) . Heated Basement	R-688 R-5 4ft80 R-5 8ft81 R-10 4ft82 R-10 8ft80 Intercept80 Slope(DD) Curve(DDS)	Crawl	R-11 flr .16 R-19 flr .15 R-30 flr .15 R-38 flr .15 R-49 flr .15 R-49 flr .15 Curve(DDS) -	Window U-value 1-Pane .00 2-Pane19 3-Pane25 R-1032	Slope	11.26 MBtu 6.96 MBtu 1.36 MBtu
	ပိ	omponent (KBtu)	(/sf) 7.96 11 3.28 6 2.53	820.00	1759.90 -70.394 (/ft)	7 -40.16 3 -37.66 7 -36.66 9 -37.33 1 -35.83 -32.871 -852.86	nt (/sf)	-1.55 92 71 57 205 47.737	(/sf flr) .40 .26 .14	. 28	se Load II II I I I I I I I I I I I I I I I I
ies Two		Delta C (MBtu)		540 540 560 560 560 560 560 560 560 56	ope(DD) rve(DDS) ab	-1.07 ft -1.08 ft97 ft99 ft94 tercept ope(DD) rve(DDS)	ed Basemer	flr42 flr30 flr21 flr21 ntercept Slope(DD)	ration (ch 43) .00 30)17 18)32	.001ELF .001ELF	Typica Residua
ng Ser				1111.	OCU CUT	R-0 R-5 2f R-5 4f R-10 2f R-10 4f Int S-10 Cur	Unheate	R-0 R-11 f R-19 f R-30 f Int	Infilt ELF A .0007(. .0005(.	Slope/ Curve/	
ibis equ		mponent (KBtu)	(/sf) 24.86 11.22 9.27 7.10	0.4.w.	4164.15 85.086 (/ft)	210.05 160.38 144.88 149.55 128.22 85.750 3926.05	(/sf)	19.36 6.43 4.30 3.05 2.77 1.95 .000 3882.69	(/sf) 82.30 31.82 19.83 5.74	2374.59 28.142	
nt Prototy	þe	Delta Co (MBtu)			pe(UU) ve(DDS) Basement	-5.31 -6.81 -7.27 -7.13 -7.77 -7.77 -6(DD) e(DDS)		.000 -7.76 -9.03 -9.78 -10.45 -10.45 -10.00)	-value 000 -7.27 -9.000 -11.03	e(DD) e(DDS)	MBtu MBtu
part	eating Lo		× × × × × 0	106 -	VIO Curi Heated	R-6 R-5 4ft R-18 8ft R-10 8ft Inte	Crawl	R-0 R-19 fir R-30 fir R-49 fir Slope Curve	Window U 1-Pan 2-Pan 3-Pan R-10	Su	22.22
WYEC	ž	omponent (KBtu)	(/sf) 29.15 11.11 8.23 5.64		5132.42 -36.417 (/ft)	166.22 133.55 123.05 128.22 114.55 88.696 6971.56	t (/sf)	10.50 6.04 4.52 3.54 3.721.73	(/sf flr) 8.83 5.55 2.88	7.333	
J OR		Delta Co (MBtu)	ling -10. 1 -12. 9 -14.	2 - 15.3 9 - 15.7 9 - 16.1	ve (DDS)	t -7.61 t -7.93 t -7.77 t -8.18 ercept pe(DD)	d Basemen	-5.31 -7.99 r -8.90 r -9.49 r -9.60 ve(DD)	ration ch 58) .00 43) -3.94 25) -7.15	.001ELF .001ELF Ba	Typica Residua
Medford			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	·	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	R-6 R-5 2f R-10 2f R-10 4f R-10 4f S-0	Unheate	R-0 R-11 fl R-19 fl R-30 fl Int	4 € € €	Slope/ Curve/	

	٠	omponent (KBtu)	(/sf) 4.67 2.35				008.18 25.919	(/ft)	23.49 18.61 17.10 16.80 15.05 10.389 1432.96	(/sf)	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-6.8 20.10	(/sf) 4.00 1.19 .72 .16	60.62 3.448	
		elta ((MBtu)		-2.98 -3.45	4.10	4 ա.	(00) (008)	sement	-3.62 -4.43 -4.68 -4.73 -5.02 (DD) (DD)		0.0 0 0 0 1	- (S00)	value 62 61 61	(SQQ) (QQ)	MBtu MBtu MBtu
	ing Load		¥a 1 1 R-Ø R-7	R-11	-2-	က	Slope	eated Ba	-6 -5 4ft -5 8ft -10 4ft 10 8ft Slope Curve	- ×er		Stope	indow U- 1-Pane 2-Pane 3-Pane R-10	Slope	40.70 M 18.70 M 1.25 M
	Cooling	ــ د د	91	~	- -	**	øn	Ĭ	~~~~	ن د	~~~~~~	വര	 × (008	2.7	וווו סיסיס
		omponent (KBtu)	(/sf) 8.26 3.3	ம் ஐ ப	:	ō r 0	697.7 51.33	(/ft)	-1.15 -2.12 -1.64 -2.24 -1.70 .000 .561.67	(/sf	7.144 .: 7.144 .: 82 82	66.3 1.34	(/sf + 2.8 2.8 1.28	4.35	e Loa - Loa Loa
Two		(MBtu)	9 9.7-	8.0	16.9 10.9	-11.27 -11.58 -11.78	(00) (008)		-7.71 -7.87 -7.89 -7.89 -7.80 (OD) -	Basement	-3.62 -1.21 -1.21 -1.66 66	(S00)	tion (31ELF 31ELF	Bas Typica Residua
96.188		۵	Ceilin R-0 R-7	44	3 6	R-38 R-49 R-60	Slope (Slab	2ft 4ft 2ft 14ft Slope Curve	ated	11 ++	Slope	Ach (.47 (.34 (.20)	pe/.0011 ve/.0016	
S							., -		R R R R R R R R R R R R R R R R R R R	Unhe	R-6 R-11 R-19 R-36		Inf: ELF. .0007 .0005 .0003	Slo	
Siding		٠,٠													
٥		(KBtu)	(/sf) 16.26 7.95	6.77	4.58 3.31	2.53	290.95 49.627	(/ft)	66.31 44.93 36.98 39.51 27.88 3.198 373.59	(/sf)	12 1 12 15 15 15 15 15 15 15 15 15 15 15 15 15	1.3 .43	(/sf) 75.82 34.31 21.73 6.93	954.65 -3.136	
٥		Compon (KB	(/s .00 16.	0.67 6. 2.31 5.	3.13 4. 4.55 3.	5.43 2.	3290.9 -49.62	t (/f	7.69 66.3 2.54 44.9 2.56 36.9 2.14 39.5 4.07 27.8 t 3.19 2373.5 S) -20.74	ST	.00 12.1 .01 2.3 .49 .7 .951 .283	2951.3) -19.43	.00 /sf .00 75.8 7.67 34.3 0.00 21.7	2954.6	
Prototype	pe	odmo EX)	(/s .00 16.	1 -10.67 6. 3 -12.31 5.	9 -13.13 4. 7 -14.55 3.	4 -15.43 2.	e(DD) 329Ø.9 e(DDS) -49.62	5	-7.69 66.3 t -11.24 44.9 t -12.56 36.9 t -12.14 39.55 t -14.07 27.8 ercept 3.19 pe(DD) 2373.5 ve(DDS) -20.74	ST	.00 12.1 -15.01 2.3 -17.49 .7 -18.951 -19.283 20.24 -1.0	pe(DD) 2951.3 ve(DDS) -19.43	U-value (/sf ne -7.67 34.3 ne -10.00 21.7 -12.73 6.9	pe(DD) 2954.6 ve(DDS) -3.13	MBtu 3 MBtu 3 MBtu
Story Prototype	ng Loa	elta Compon (MBtu) (KB	(/s .00 16.	-11 -10.67 6. -13 -12.31 5.	-19 -13.13 4. -27 -14.55 3.	-34 -15.43 2.	e(DD) 329Ø.9 e(DDS) -49.62	eated Basement (/f	-0 4ft -11.24 44.9 -5 4ft -11.25 36.9 -5 8ft -12.56 36.9 -10 4ft -12.14 39.5 -10 8ft -14.07 27.8 Intercept 3.19 Slope(DD) 2373.5 Curve(DDS) -20.74	rawl (/sf	-0 -11 flr -15.01 2.3 -19 flr -17.49 .7 -30 flr -18.951 -38 flr -19.283 -49 flr -20.24 -1.0	e(DD) 2951.3 e(DDS) -19.43	1-Pane .00 75.8 2-Pane -7.67 34.3 3-Pane -10.00 21.7 R-10 -12.73 6.9	e(DD) 2954.6 e(DDS) -3.13	85.92 MBtu 34.98 MBtu .88 MBtu
tory Prototype	Loa	t Delta Compon) (MBtu) (KB	Wall (/s R-0 .00 16.	R-11 -10.67 6.	R-19 -13.13 4. R-27 -14.55 3.	8 R-34 -15.43 2.	84 Slope(DD) 3290.9 88 Curve(DDS) -49.62	Heated Basement (/f	R-0 -7.69 66.3 R-5 4ft -11.24 44.9 R-5 8ft -12.56 36.9 R-10 4ft -12.14 39.5 R-10 8ft -14.07 27.8 Intercept 3.19 Slope(DD) 2373.5 Curve(DDS) -20.74	f) Crawl (/sf	2 R-0 .00 12.1 2 R-11 flr -15.01 2.3 3 R-19 flr -17.49 .7 1 R-30 flr -18.951 R-38 flr -19.283 R-49 flr -20.24 -1.0	6ø Slope(DD) 2951.3 16 Curve(DDS) -19.43	fir) Window U-value (/sf 41. 1-Pane .00 75.8 57 2-Pane -7.67 34.3 85 3-Pane -10.00 21.7 8-10 -12.73 6.9	70 Slope(DD) 2954.6 42 Curve(DDS) -3.13	ad = 85.92 N ad = 34.98 N
Story Prototype	eating Loa	ut Delta Compon cu) (MBtu) (KB	(/sf) Wall (/s 17.73 R-0 .00 16.	5.38 R-11 -10.67 6. 3.85 R-13 -12.31 5.	3.26 R-19 -13.13 4. 2.47 R-27 -14.55 3.	2.00 R-34 -15.43 2. 1.57 1.30	3600.04 Slope(DD) 3290.9 102.808 Curve(DDS) -49.62	eated Basement (/f	43.90 R-0 -7.69 66.3 25.17 R-5 4ft -11.24 44.9 19.33 R-5 8ft -12.56 36.9 22.10 R-10 4ft -12.14 39.5 14.45 R-10 8ft -14.07 27.8 .000 Intercept 3.19 3824.72 Slope(DD) 2373.5	t (/sf) Crawl (/sf	7.15 R-0 .00 12.1 2.12 'R-11 flr -15.01 2.3 .83 R-19 flr -17.49 .7 .01 R-30 flr -18.951 R-38 flr -19.283 R-49 flr -20.24 -1.0	2984.60 Slope(DD) 2951.3 225.916 Curve(DDS) -19.43	(/sf fir) Window U-value (/sf 9.41. 1-Pane .000 75.8 6.57 2-Pane -7.67 34.3 3.85 3-Pane -10.00 21.7 R-10 -12.73 6.9	0 Slope(DD) 2954.6 2 Curve(DDS) -3.13	se Load = 85.92 N at Load = 34.98 N at Load = .88 N
One Story Prototype	eating Loa	Component Delta Compon J) (KBtu) (MBtu) (KB	(/sf) Wall (/s 00 17.73 R-0 .00 16.	02 5.38 R-11 -10.67 6. 37 3.85 R-13 -12.31 5.	.28	23 2.00 R-34 -15.43 2. 88 1.57 30 1.30	3600.04 Slope(DD) 3290.9 -102.808 Curve(DDS) -49.62	/ft) Heated Basement (/f	41 43.90 R-0 -7.89 66.3 49 19.33 R-5 8ft -11.54 44.9 63 22.10 R-10 4ft -12.56 36.9 38 22.10 R-10 4ft -12.14 39.5 38 24.72 R-10 8ft -14.07 27.8 Intercept 3.19 Slope(DD) 2373.5 Curve(DDS) -20.74	sement (/sf) Crawl (/sf	69 7.15 R-0 .00 12.1 43 2.12 R-11 flr -15.01 2.3 43 .83 R-19 flr -17.49 .7 7101 R-30 flr -18.951 R-38 flr -19.283 R-49 flr -20.24 -1.0	2984.60 Slope(DD) 2951.3 -225.916 Curve(DDS) -19.43	sf fir) Window U-value (/sf 9.41. 1-Pane .00 75.8 6.57 2-Pane -7.67 34.3 3.85 3-Pane -10.00 21.7 R-10 -12.73 6.9	ELF 12.370 Slope(DD) 2954.6 ELF 1.542 Curve(DDS) -3.13	Base Load = 85.92 N Typical Load = 34.98 N esidual Load = .88 N
One Story Prototype	eating Loa	omponent Delta Compon (KBtu) (MBtu) (KB	(/sf) Wall (/sf) (/s	11 -19.02 5.38 R-11 -10.67 6. 19 -21.37 3.85 R-13 -12.31 5.	22 -22.28 3.26 R-19 -13.13 4. 30 -23.50 2.47 R-27 -14.55 3.	23 2.00 R-34 -15.43 2. 88 1.57 30 1.30	3600.04 Slope(DD) 3290.9 -102.808 Curve(DDS) -49.62	/ft) Heated Basement (/f	1 43.90 R-0 -7.69 66.3 2 25.17 R-5 4ft -11.24 44.9 3 22.10 R-10 4ft -12.14 39.5 8 14.45 R-10 8ft -14.07 27.8 1000 Intercept 3.19 3824.72 Slope(DD) 2373.5 -27.226 Curve(DDS) -20.74	ement (/sf) Crawl (/sf	69 7.15 R-0 .00 12.1 43 2.12 R-11 flr -15.01 2.3 43 .83 R-19 flr -17.49 .7 7101 R-30 flr -18.951 R-38 flr -19.283 R-49 flr -20.24 -1.0	2984.60 Slope(DD) 2951.3 -225.916 Curve(DDS) -19.43	on (/sf flr) Window U-value (/sf .00 9.41, 1-Pane .00 75.8 -4.38 6.57 2-Pane -7.67 34.3 -8.57 3.85 3-Pane -10.00 21.7 R-10 -12.73 6.9	12.370 Slope(DD) 2954.6 1.542 Curve(DDS) -3.13	Base Load = 85.92 Wypical Load = 34.98 Wsidual Load = .88

		mponent (KBtu)	(/sf) 3.75 3.75 1.66 1.35 1.98 1.98 1.98	606.17 17.090 (/ft)	35.22 28.22 27.72 26.72 26.72 163.29	(/sf)	5.46 5.46 5.48 5.48 5.49 5.425 106.16	(/sf) -3.36 -4.26 -2.86	551.56 16.070
	p	Delta Co (MBtu)	11.1.00	e (DD) e (DDS) asement	-1.35 -1.69 -1.63 -1.65 -1.65 -1.69 -1.69 -1.69 -1.69 -1.69 -1.69		.000 	U-value ne .000 ne13 ne .07	MBtu MBtu MBtu MBtu MBtu
	Cooling Loa		W R R B B B B B B B B B B B B B B B B B	Slop Curv Heated B	R-6 R-5 4ft R-5 8ft R-10 4ft R-10 8ft Slope Curve	Crawi	R-6 R-11 fr R-13 fr R-3 fr R-4 fr R-4 fr R-4 fr R-6 fr Slope	Window U. 1-Pan 2-Pan 3-Pan R-10	Slope Curve 27.23 h 18.53 h 8.78 h
	Š	omponent (KBtu)	(/sf) 7.33 2.59 1.83 1.15 .97 .58 .58	995.06 40.716 (/ft)	-5.03 -5.53 -4.53 -6.53 -4.03 -4.03 -71.253	(/sf)	2.35 4.01 4.44 4.71 5.439 978.52 73.266	/sf flr) 2.61 1.89 1.14	3.875 208 Load = Load =
Two		elta ((MBtu)	00 -2.855 -3.30 -3.30 -3.82 -4.05 -4.05 -4.13	(S00) (002)	-2.98 -2.98 -2.94 -2.98 -2.92 (DD) -1 (DDS)	Basement	-1.35 89 .07 07	tion (/ .000 87 1.76	001ELF 001ELF Base Typical Residual
Series		۵	7	Slope Curve Slab		Unheated	-0 -11 fir -19 fir -30 fir Inter Slope Curve	Infiltrat ELF Ach 0007(.47) 0005(.35) 0003(.21)	Slope/.Ø. Curve/.Ø
ding					~ CC CC CC	ر	œ œ œ		
ŝ		mponent (KBtu)	(/sf) 15.87 7.16 7.16 5.92 4.55 3.87 2.79 2.79	2665.44 53.025 (/ft)	65.34 37.34 29.59 31.59 21.59 21.59 1719.35 1719.35	(/sf)	11.37 2.37 2.97 .20 .02 .49 -1.49 2385.52 32.362	(/sf) 63.41 23.97 14.90 4.24	745.44 24.865
Prototype		elta Co (MBtu)	. 4 4 1	(DD) (DDS) sement	-4.21 -5.33 -5.64 -5.66 -5.96 (DD) (DD)		.000 -5.40 -6.24 -6.70 -6.71 -7.12 (DD) (DD)	value - 6.00 - 6.000 - 8.52	e(DD) 1 e(DDS) MBtu MBtu MBtu MBtu
d Town	ing Load	۵	**************************************	Slope Curve	-6 -5 4ft -5 8ft -10 4ft -10 8ft Inter Slope Curve	- × a r		indow U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 40.28 MI 16.91 MI 2.39 MI
. <u>.</u> **	Heat	e) t	~60000000000000000000000000000000000000	48 83 t) H	404040N0 KKKKK	0	0 ~ 1 0 8 00 0	- 84 64 84	מסם אש
₹MŦ		omponen (KBtu	7.001 7.001	3349.4 -20.18 (/ft	35.3 17.5 12.8 15.0 9.3 2215.9	t (/sf		7.6. 7.6. 4.9. 2.6(7.333 5.104 se Load al Load
7		elta Co (MBtu)	9 .00 -7 .12 -8 .26 -9 .28 -9 .63 -10 .09 -10 .60	(sgg)	-5.41 -6.12 -6.31 -6.22 -6.45 (00)	аѕешел	7946	.888 -3.23 -5.97	ELF ELF Typic esidu
Memphis TN		Q	Cei. RR-6i. RR-11 RR-120 RR-380 RR-380 RR-498	Slope Curve Slab	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Interc Slope Curve	Unheated B	R-0 -4 R-11 flr -5 R-19 flr -6 R-30 flr -6 Intercept Slope(DD) Curve(DDS)	Infiltrat ELF Ach .0007(.79) .0005(.56) .0003(.34)	Slope/.001 Curve/.001

		٠																	
		Component (KBtu)	(/sf) 3.38 1.35	<u>.</u>	Θ4	· (C)		407.27 41.021	(/ft)	000	. C. E	27.483 296.48 173	(/sf)	3.99 6.64 5.67 7.11 5.12	5.1 26. 48.6	(/sf)	-2.47 -2.29 98	-447.53 13.406	
		elta Com (MBtu)		~ ∞	യ്ഠ	. o.		(S00) (00)	sement	-1.20		-1.47 cept (00) (00S)			(00) (00) (00s)	va i ue		(800) (008)	Btr Btr Btr
	ng Load	۵	Wall R-0 R-7	R-11 R-13	1,0	1 (1)		Slope	ated Ba	4-4	00 0	Inter Slope Curve	- we	11111 11111 1286 1486 1777	Sic	-N wopui	1-Pane 2-Pane 3-Pane R-10	Slope	25.45 M 17.57 M 8.18 M
	Coolin								£	0< 0< 0	< 0< 0	×	ڻ ٽ	~ ~ ~ ~ ~ ~ ~		lr) ¥i	015.00	თო	וו וו וו סיסיסי
		Component (KBtu)	(/sf) 7.55 2.70	6,8	201		 	.069.69 34.374	(/ft)	CA CA &	-2.36	-1.69 .000 -529.98 27.188	t (/sf)	1.98 3.52 3.87 4.09	4.66Ø -76Ø.8Ø 46.517	(/sf fl	2.32 1.57 .89	2.72	Loa Loa
Two		elta Com (MBtu)	. 6 6.0	-3.37	0.0	3 4 4 3 4 6	4 4	(00) 1 (00s) 1		-2.46	i 4.	-2.44 cept (DD) (DDS)	asement	-1.28 28 67		i on	.00 89 -1.71	IØ1ELF IØ1ELF	Base Typica Residua
eries		- - -	Ceiling R-0 R-7	77	7	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	4.0	Slope (I Curve (I	Slab	2ft		4ft Inter Slope Curve	heated B	<u> </u>	Intercept Slope(DD) Curve(DDS)	=	210 8	lope/.00 urve/.00	
Ň										8 8 6 6 6 1	R-10	-1	Unhe	R-11 R-11 R-19		4-1	1999 1999 1999	S	
e Siding		component (KBtu)	(/sf) 15.96 7.00					96.79 17.496	(/ft)	აფ. დ.დ.	1.6	19.52 -3.799 Ø76.94 -5.922	(/sf)	12.06 2.68 1.23 .39	0 CM 4 CM	(/sf)	63.48 23.24 14.40 4.00	631.43 29.282	
Prototype		lta Comp MBtu) (6.0	-3.25	9 60	44		(DD) 24 (DDS) 8	ement	-5.04	-6.36 -6.28	N		.88 -5.63 -7.60 -7.11	. ° (a l ue	.00 -5.80 -7.07 -8.56	(00) (00S)	MBtu MBtu MBtu
	Load	De (₩ R = 1 7		77	R-27 R-34		Slope (Curve (C	ed Bas		8ft 4ft	8ft Inter Slope Curve	_		Inter Slope Curve	10 w O-v	1-Pane 2-Pane 3-Pane R-10	Slope(Curve(8.51 MB 5.85 MB 2.52 MB
MApartment	eating								Heat	R-6 R-5	- 2	R-10	Cra¥	- A A A A A A A A A A A A A A A A A A A	1 4	r) Wind			11 II II
ΤMΥ	I	ponent (KBtu)	(/sf) 19.51	101	ຄຸດກຸ	4.	4.4	1149.35	(/ft)	40.52 21.35	യസ	11.69 .000 2901.78 24.704	(/sf	3.65 1.32 .57 .08	-1.245 1822.26 169.182	(/sf flr	•	7.208	se Load al Load
•		(MBtu) (I	60.0	-8.54	0 0 0	10.3 10.6	-10.87	(00) (00s)		6.6	-6.76	6.88 (5.88 (5.88	semen	-5.9 -6.9 -7.1	,	tion		Ø1ELF Ø1ELF	Ba Typic Residu
)	_ Q	Ceiling R-8	-1-	- 2	98	689	Slope (I Curve (I	Slab	2	40	ر ن ن ف د د 4 ف م م	t 6	+ + +	Intercept Slope(DD) Curve(DDS)	filtrat	Ach (.79 (.56 (.34	lope/.0016 urve/.0016	
Метор)									1 1	R-5	7 -	C L	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		-	ELF .00007 .00005	S	

	Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 R-0 R-7 R-7 R-11 R-11 R-13 R-13 R-13 R-13 R-19 R-27 R-34 R-34 R-34 R-53 R-57	Slope(DD) 695.02 Curve(DDS) 36.169 Heated Basement (/ft)	00448898	Crawl (/sf)	R-Ø R-11 flr94 3.37 R-19 flr -1.66 2.90 R-30 flr -2.11 2.61 R-38 flr -2.21 2.54 R-49 flr -2.50 2.35 Intercept 1.726 Slope(DD) 1248.92 Curve(DDS) -162.303	Window U-value (/sf) 1-Pane .00 -6.98 2-Pane .12 -6.34 3-Pane .52 -4.20 R-10 .98 -1.68	Slope(DD) -758.90 Curve(DDS) 18.725 76.25 MBtu 50.30 MBtu 19.39 MBtu
ding Series Two	ပိ	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 10.29 R-7 -9.92 3.85 R-11 -11.50 2.82 R-19 -12.92 1.90 R-22 -13.37 1.61 R-30 -14.33 .98 R-49 -14.67 .76 R-60 -14.89 .62	Slope(DD) 1717.25 Curve(DDS) 3.017 Slab (/ft)	R-Ø -6.06 .41 R-5 2ft -6.36 -1.40 R-5 4ft -6.39 -1.58 R-10 2ft -6.37 -1.46 R-10 4ft -6.37 -1.22 Intercept .000 Slope(DD) -615.40 Curve(DDS) 63.848	Unheated Basement (/sf)	R-0 R-11 flr -1.22 3.19 R-19 flr -1.88 2.76 R-30 flr -2.30 2.49 Intercept 1.683 Slope(DD) 1123.24 Curve(DDS) -131.739	Infiltration (/sf flr) ELF Ach .0007(.56) .00 8.41 .0005(.40) -3.14 6.38 .0003(.25) -6.73 4.04	Slope/.001ELF 14.578 Curve/.001ELF -3.653 Base Load = Typical Load = Residual Load =
Story Prototype Si	eating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .000 1.26 R-788 .48 R-11 -1.01 .36 R-13 -1.12 .26 R-19 -1.18 .21 R-27 -1.25 .15 R-34 -1.29 .11	Slope(DD) 125.69 Curve(DDS) 20.256 Heated Basement (/ft)	R-Ø -1.53 .47 R-5 4ft -1.79 -1.09 R-6 8ft -1.81 -1.21 R-10 4ft -1.82 -1.28 R-10 8ft -1.84 -1.40 Intercept -1.425 Slope(DD) -12.51 Curve(DDS) 1.614	Crawl (/sf)	R-0 1.04 R-11 flr -1.05 36 R-19 flr -1.17 28 R-38 flr -1.24 24 R-49 flr -1.25 .24 Intercept .152 Slope(DD) 103:40 Curve(DDS) 13.783	Window U-value (/sf) 1-Pane .00 3.93 2-Pane52 1.12 3-Pane60 .67 R-1070 .14	Slope(DD) 51.50 Curve(DDS) 3.687 7.24 MBtu 1.55 MBtu
Miami FL WYEC	Ĭ	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 2.05 R-1 -2.10 .68 R-11 -2.44 .46 R-19 -2.74 .27 R-22 -2.81 .27 R-30 -2.96 .12 R-49 -3.00 .10 R-60 -3.00	Slope(DD) 216.32 Curve(DDS) 21.729 Slab (/ft)	R-Ø -1.58 .17 R-5 2ft -1.6313 R-5 4ft -1.6313 R-10 2ft -1.6313 R-10 4ft -1.6313 Intercept .000 Slope(DD) -66.72 Curve(DDS) 8.113	Unheated Basement (/sf)	R-0 R-11 flr -1.6503 R-19 flr -1.6503 R-30 flr -1.6503 Intercept020 Slope(DD) -12.69 Curve(DDS) 5.180	Infiltration (/sf flr) ELF Ach .0007(.59) .00 .39 .0005(.42)31 .19 .0003(.25)51 .06	Slope/.001ELF065 Curve/.001ELF .893 Base Load = Typical Load = Residual Load =

		Component (KBtu)	(/sf) 4.17 1.56		e 69.	49	è.		406.28 68.642	(/ft)	~ 6	10	2.5	78.852 368.11 .034	(/sf)	3.83		നന	2. Ø95 67.	(/sf)	-13.46 -9.92 -6.50	1111.33 22.783	
		Delta Com (MBtu)		-1.42	. o	7.	Ö		(SQQ)	sement	99.		35	(00) (00) (00s)		•	1.57		cept (DD) 1 (DDS) -1	value		e(DD) -1 e(DDS)	MBtu MBtu MBtu
	ing Load	ŏ	Wall R-0	٦,	R-13	2	1		Slope	eated Ba	*	00	-10 4ft -10 8ft	Sign	- wer	9	111 4 11	-38 †! -49 f!	Inter Slope Curve	/indow U-	1-Pane 2-Pane 3-Pane R-10	Slope	52.26 N 41.35 N 21.84 N
	Cooling	ent tu)		9	<u>ار</u> د	: '	.88	.61	1.92 .98Ø	ft) H	27 R	. 98	er er	. 688 329	/sf) C	.32	3.83 R 3.57 R		. 747 6.85 . 758	f f1r) W	6.59 4.79 2.92	. 833	
		a Component tu) (KBtu)	e i	4.20	.72	13	. w	4.) 161. S) 2	>	54	.63 .63	60	-32 -43)	ement (/	60	1.055 1.295 1.45		117 -169	s/) u	. 90 . 2 . 16 . 4 . 40	ELF 10 ELF -	Base Typical esidual
eries Two		Delts (MBt	əiling -Ø	-111	-19	- 30	-38	- 60	lope (DD urve (DD	lab		ئو ئو	ه -ب 4 د	, 6 € Ve (⊖ C)	ated Bas		<u></u>		Intercept Slope(DD) Curve(DDS)		7(.56) 5(.40) - 3(.25) -	8/.001 8/.001	. %
ng Se			σœι	r œ	œ 0	202	OZ 02	z oz	ဖပ	S	1	1 1	R-10	91-	Unhea	R-6	R-11 R-19 R-30			Inf	. 6663 . 6663	Slope	
Sidi		(KBtu)	(/sf) 1.12	4. E.	.21	.12	60.		94.77 20.996	(/ft)	39	-1.11	-1.36	-1.61 -2.018 32.99 .777	(/sf)	.91	28 48 48	.23	.151 100.13 9.328	(/sf)	3.54 1.64 1.63	52.06	
Prototype		lta Comp MBtu) (60		. 43	4.4	4		(SQQ)	sement			60	cept (00) (00S)		80		4.4		value		(800) (008)	MBtu MBtu MBtu
Town	ig Load	۵	Wa R-Ø	R-7	R-13	R-19 R-27	R-34		Slope (Curve)	ated Bas	100	5 4 ft	10 4ft	10 Sft Inter Slope Curve	- ×e	6	-11 flr -19 flr -30 flr		Inter Slope Curve	ndow U-	1-Pane 2-Pane 3-Pane R-10	Slope	3.02 M .87 M .13 M
P.	leatin									Ĭ	4	ς α	2	<u>.</u>	٦	۵	, ««««	: 0≃ 0	£	Ir) Wi		ოო	וווו סיסיסי
WYEC	I	Component (KBtu)	(/sf) 1.90	.63	. 52	. 20	. 11	 	198.23 20.501	(/ft)				11 .000 -55.40	//sf	5	1.01		004 -5.43 2.216	4-	.35	6. 80 80. 80 80. 80	
-		Delta Com (MBtu)	. 89. 51	76	06.1	-1.02	-1.07	-1.08	(00) (008)		.54	. 55		ω	asement			•	(00) (00)	ri on		.001ELF .001ELF	Base Typical Residual
:- F		De.	o	۲-	77	20	ו מיי	R-49 R-60	Slope (I	Slab		2ft	4†t 3 2ft					-	Intercept Slope(DD) Curve(DDS)	filtrat	ELF Ach .0007(.59) .0005(.42) .0003(.25)	10pe/.00	
X. en:			-			_					R-10	R-5	R-5 R-16	R-10	Unhe	. (* 4 4 0	9		ľ	Де. 6. 1. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	ั้ง	

	ooling Load	Delta Component (MBtu) (KBtu)	_ _ _	-0 4.6	-18/ 1.9	-13 -1.13 1.1	-1.19	-34 -1		Slope(DD) 601.95 Curve(DDS) 49.429	+		-5 4ft .22 77.8	t .24 78.5 t .25 79.0	-10 8ft .2 Intercept Slope(DD)	19:1- (600)	5	11 flr - 10 3.5	-30 flr35 2.9	Intercept 2 Slope(DD) 822		0.6- 00. ene	2-Fane .32 -6.83 3-Pane .66 -4.48 R-10 1.05 -1.73	8 4	50.09 MBtu 39.80 MBtu 19.98 MBtu
ing Series Two	ŭ	Delta Component (MBtu) (KBtu)	eiling (/st	-8 10.6 -7 -3 03 3 5	-11 -4.55 2.4	-19 -5.11 1.5	-22 -5.27 1.2 -30 -5.48 c	R-38 -5.61 .71	-60 -5.72 .5	Slope(DD) 13ØØ.97 Curve(DDS) 66.722	Slab (/ft)	- 00 6-	-5 2ft -2.06	t - 2.08	Intercept Slope(DD) 34 Curve(DDS) -1	ent (9.8	9 4 1 - 1 1 8 3	-30 fir21 3.1	Intercept 2.533 Slope(DD) 932.12 Curve(DDS) -143.636	iltration (/sf flr)	(8 (8 (8) (8)	(.25) -4.30 2.8	Slope/.001ELF 9.646 Curve/.001ELF677	Base Load = Typical Load = Residual Load =
MApartment Prototype Siding	Heating Load	Delta Component (MBtu) (KBtu)	Wall (/sf)	-722 .4	-1125 .3	-1328 .2	-2731 .1	-3432 .1		Slope(DD) 114.52 Curve(DDS) 17.083	Heated Basement (/ft)	-053	-5 4ft57 -1.2 -5 8ft57 -1.2	t57 -1.2	Intercept Slope(DD) Curve(DDS)	Crawl (/sf)	R-0	3 3 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	138 flr 1.42	Intercept Slope(DD) Curve(DDS)	Window U-value (/sf)	ne .00 3.4	-Pan -10	Slope(DD) 48.99 Curve(DDS) 3.067	2.88 MBtu .82 MBtu .16 MBtu
Miami FL WYEC			iling Ø.	-782 .6	4. 96 11. of -	-22 -1.10 .2	-30 -1.14	-38 -1.16 .1 -49 -1.18 .1	-60 -1.19 .0	으늘	Slab (/ft)	-653 .0	27t630 4ft530	-10 2ft530 -10 4ft530	Intercept .000 Slope(DD) -36.89 Curve(DDS) 4.487	Unheated Basement (/sf)	530	R-19 f.lr5462 R-30 f.lr5462		Intercept000 Slope(DD) -17.59 Curve(DDS) 3.299	_	. 0007 (.59) . 00 . 31 . 0005 (.42)21 . 14	(.25)33	Slope/.001ELF146 Curve/.001ELF .833	Base Load = Typical Load = Residual Load =

	•	omponent (KBtu)	(/sf) 17 2.31 17 1.27 34 1.12 62 .87 76 .56 10 .44	580.36 -27.913 (/ft)	5.08 1.59 1.59 1.59 37.95 2.199	(/sf)	20 20.72 8 30.372 8 30.372 8 30.48 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(/sf) 0 1.74 7 .82 3 .52 9 .17	72.65	
-	:	Delta Co (MBtu)	Wall R-0 R-7 -1.1 R-11 -1.3 R-13 -1.7 R-27 -1.7 R-34 -2.1	Slope(DD) Curve(DDS) Heated Basement	R-0 R-5 4ft -3.98 R-5 8ft -3.99 R-10 4ft -4.09 R-10 8ft -4.00 Slope(DD) Curve(DDS)	Crawl	R-0 R-11 flr 1.00 R-19 flr 1.18 R-30 flr 1.31 R-38 flr 1.34 R-49 flr 1.43 Intercept Slope(DD) Curve(DDS)	Window U-value 1-Pane 2-Pane1 3-Pane2 R-10	Slope(DD) Curve(DDS)	15.99 MBtu 3.86 MBtu -3.20 MBtu
ding Series Two	•	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 4.38 R-1 -3.96 1.81 R-11 -4.59 1.40 R-19 -5.16 1.03 R-2 -5.42 .88 R-38 -5.72 .67 R-38 -6.09 .42 R-49 -6.09 .42	Slope(DD) 978.14 Curve(DDS) -40.346 Slab (/ft)	R-0 -4.80 -3.71 R-5 2ft -4.66 -2.87 R-5 4ft -4.56 -2.26 R-10 2ft -4.63 -2.69 R-10 4ft -4.48 -1.78 Intercept .318 Slope(DD) -718.93 Curve(DDS) 32.049	Unheated Basement (/sf)	R-11 flr -1.00 2.07 R-19 flr -37 2.47 R-30 flr .03 2.74 Intercept 3.435 Slope(DD) -946.84 Curve(DDS) 74.856	Infiltration (/sf flr) ELF Ach .0007(.61) .00 .73 .0005(.44)37 .49 .0003(.26)70 .27	Slope/.001ELF .812 Curve/.001ELF .325	Base Load = Typical Load = Residual Load =
One Story Prototype Si	ating Load	Velta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 R-11 R-13 R-13 R-13 R-13 R-13 R-27 R-39 R-39 R-34 R-39 R-34 R-39 R-34 R-39 R-34 R-36 R-34 R-36 R-	Slope(DD) 8655.96 Curve(DDS) -170.145 Heated Basement (/ft)	R-Ø -15.41 135.73 R-5 4ft -22.70 91.81 R-5 8ft -25.32 78.03 R-10 4ft -24.64 80.13 R-10 8ft -28.74 55.43 Intercept .000 Slope(DD) 5800.95 Curve(DDS) -60.331	Crawl (/sf)	R-0 'R-11 flr -38.96 .64 R-19 flr -43.43 -3.56 R-30 flr -47.62 -6.29 R-49 flr -51.34 -8.70 Intercept -12.783 Slope(DD) 8430.60 Curve(DDS) -221.029) Window U-value (/sf) 1-Pane .00 200.73 2-Pane -19.17 97.00 3-Pane -25.68 61.79 R-10 -33.33 20.37	Slope(DD) 8765.87 Curve(DDS) -44.031	= 228.00 MBtu = 81.21 MBtu = 11.24 MBtu
Minneapolis MN WYEC	:	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0	Slope(DD) 8972.33 Curve(DDS) -268.763 Slab (/ft)	R-Ø -26.96 66.15 R-5 2ft -34.00 23.74 R-5 4ft -36.07 11.27 R-10 2ft -35.31 15.85 R-10 4ft -38.23 -1.74 Intercept -38.713 Slope(DD) 11467.25 Curve(DDS) -203.604	Unheated Basement (/sf)	R-015.41 14.63 R-11 flr -35.88 1.34 R-19 flr -41.72 -2.46 R-30 flr -45.48 -4.90 Intercept -11.483 Slope(DD) 8966.55 Curve(DDS) -755.517	Infiltration (/sf flr) ELF Ach .0007(.88) .00 26.97 .0005(.63)-11.98 19.19 .0003(.39)-23.87 11.47	Slope/.001ELF 38.020 Curve/.001ELF .730	Base Load = Typical Load = Residual Load =

	Cooling Load	Delta Component (MBtu) (KBtu)		-0 .00 2.2	-749 1.2	R-1156 1.08 R-13 60 01	-1975 .6	-2782 .5	4. 18 46-		Slope(DD) 644.73 Curve(DDS) -23.255	eated Basement (/		-5 4ft -1.44 .2	-5 8ft -1.43 .5	-10 4ft -1.462	Intercept Slope(DD) -5	(503) (7st		fir .50 2.4	63 3.4 71 3.6	fir .73 3.6	Tir .78 3.7	pe (DD) -487	22:00 (000)0:00 uopu	-Pana and -	-Pane .049	3-Pane .0961 R-10 .1424	Slope(DD) -106.00 Curve(DDS) 2.280	
ing Series Two	°°)	Delta Component (MBtu) (KBtu)	/) Builing	4 66.	-/ -1.49 1 -11 -1.72 1	-19 -1.94	-22 -2.03	-36 -2.14	R-49 -2.28 .39	-60 -2.32	Slope(DD) 900.75 Curve(DDS) -32.816	Slab (/ft) H	-6 -1:91 -11 49	-5 2ft -1.82 -9.24	4ft -1.77 -7.9	-10 4ft -1.74 -7.24	Intercept -3.642 Slope(DD) -1191.04 Curve(DDS) 44.104	ed Basement (/sf) C		11 flr44 1.68 R	-19 flr16 2.15 R -30 flr .02 2.45 R	ok o	ept 3.278	Slope(DD) -1135.55 Curve(DDS) 106.307	tration (/sf	. 88	40	. 98 (93.	Slope/.001ELF 1.208 Curve/.001ELF417	Base Load = Typical Load = Residual Load =
Mid Town Prototype Sid	eating Load	Delta Component (MBtu) (KBtu)	1] (/sf	-6 .00 41.2 -7 -10 18 19 9	-11 -11.63 16.8	3 -13	-19 - 14.20 11.4	-34 -16.67 6.2			Slope(DD) 8103.33 Curve(DDS) -81.751	Heated Basement (/ft)	-0 -9.18 171	-5 4ft -11.78 106	4ft -12.41 90	-10 8ft -13.54 62	rcept e(DD) 633 e(DDS) -51	Crawl (/sf)	- 30 AB	-11 flr -13.73 3.8	R-30 flr -17.65 -2.70 R-38 flr -19 an -2.20	-49 fir -19.00 -4.9	ntercept -8.81	(DD) 7911.4 (DDS) -191.56	Window U-value (/sf)	-Pane .00 188.7	2-rane -14.63 87.12 3-Pane -19.99 RE 97	-10 -24.61 17.8	Slope(DD) 7617.25 Curve(DDS) -17.756	111.71 MBtu 37.35 MBtu 2.13 MBtu
Minneapolis MN WYEC		Delta Component (MBtu) (KBtu)	iling (/sf	-7 -16.78 17.9	-11 -19.45 13.4	-19 -21.86 9.4	-26 -23.91 6.0	-38 -24.62 4.8	1 1		Slope(DD) 8771.15 Curve(DDS) -173.100	Slab (/ft)	-13.16 71.8	-5 21t -14.92 27.8 -5 4ft -15 40 15 2	-10 2ft -15.24 19.8	-10 4ft -15.93 2.5	rcept -33. B(DD) 10890 B(DDS) -153.	Unheated Basement (/sf)	-0 -9.18 11.4	2	-30 fir -17.13 -1.8		ntercept -7.07	Curve(DDS) -705.891	Infiltration (/sf flr) ELF Ach	(.90) .00 25.3	$(.38)^{-3}$		Slope/.001ELF 33.542 Curve/.001ELF 3.750	Base Load = Typical Load = Residual Load =

	Component (KBtu)	\$\$\)1 . 9\$. 98 . 98 . 81 . 88 . 49 . 88 . 11	373.93 -1.130 (/ft)	18. 1112	(/sf) 2.03 2.76 2.95 3.03 3.05 3.10 3.288 -340.96	(/sf) -1.54 -1.58 -1.05	194.66 5.163
Cooling Load	Delta Co (MBtu)	Wall R-0 R-7 R-1132 R-1344 R-1944 R-2753	Slope(DD) Curve(DDS) Heated Basement	R-0 R-5 4ft -1.15 R-5 8ft -1.18 R-10 4ft -1.19 R-10 8ft -1.19 Intercept -1.19 Slope(DD)	Craw! R-0 R-11 flr .44 R-19 flr .65 R-38 flr .61 R-49 flr .61 Slope(DD) .	Window U-value 1-Pane .00 2-Pane .00 3-Pane .07 R-10 .16	Slope(DD) Curve(DDS) 9.61 MBtu 5.68 MBtu 2.12 MBtu
os T∗o	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø 3.99 R-7 -1.41 1.64 R-11 -1.64 1.26 R-22 -1.93 .77 R-38 -2.06 .57 R-49 -2.17 .38 R-6Ø -2.2Ø .34	Slope(DD) 865.40 Curve(DDS) -32.341 Slab (/ft)	-1.38 -5. -1.32 -3. -1.32 -3. -1.33 -3. -1.28 -2. ept .900) -1117.	Unheated Basement (/sf) R-0 R-11 fir38 1.40 R-19 fir16 1.77 R-30 fir02 2.00 Intercept 2.649 Slope(DD) -884.10 Curve(DDS) 81.319	Infiltration (/sf flr) ELF Ach .0007(.61) .00 .32 .0005(.44)19 .17 .0003(.26)31 .06	Slope/.001ELF .021 Curve/.001ELF .625 Base Load = Typical Load = Residual Load =
MApartment Prototype Sid ating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 R-13 R-13 R-13 R-19 R-27 R-27 R-34 R-19 R-27 R-34 R-34 R-19 R-19 R-34 R-34 R-11 R-34 R-11 R-13 R-13 R-13 R-14 R-15 R-16 R-17 R-18 R-18 R-18 R-18 R-18 R-18 R-18 R-18	Slope(DD) 7966.00 Curve(DDS) -36.595 Heated Basement (/ft)	-6 4ft -13.46 120. -5 8ft -14.14 97. -10 4ft -14.01 101. -10 8ft -14.97 69. Intercept .0 Slope(DD) 7037. Curve(DDS) -52.4	Crawl (/sf) R-0 .00 28.44 R-13 flr -13.97 5.15 R-30 flr -16.41 1.09 R-38 flr -17.97 -1.60 R-38 flr -19.34 -3.79 Intercept -7.716 Slope(DD) 8049.60 Curve(DDS) -194.597	Window U-value (/sf) 1-Pane .00 189.87 2-Pane -14.87 86.61 3-Pane -19.44 54.89 R-10 -24.81 17.58	Slope(DD) 7503.59 Curve(DDS) -11.794 : 105.72 MBtu : 34.53 MBtu
Minneapolis MN WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 44.84 R-7 -16.42 17.46 R-11 -19.04 13.09 R-19 -21.40 9.17 R-22 -22.25 7.75 R-30 -23.40 5.84 R-38 -24.67 3.72 R-49 -24.67 3.72 R-60 -25.05 3.09	Slope(DD) 8455.97 Curve(DDS) -150.713 Slab (/ft)	2ft -15.74 44.00 4ft -16.15 30.5 2 2ft -16.00 35.5 0 4ft -16.66 16.8 Intercept -22.24 Slope(DD) 12079.00 Curve(DDS) -203.08	Unheated Basement (/sf) R-0 R-11.12 9.91 R-11 flr -15.13 3.23 R-19 flr -16.6766 R-30 flr -17.6699 Intercept -5.646 Slope(DD) 6441.08 Curve(DDS) -664.479	Infiltration (/sf flr) ELF Ach .0007(.90) .00 25.12 .0005(.64) -9.13 17.52 .0003(.38)-17.84 10.25	Slope/.001ELF 32.895 Curve/.001ELF 4.272 Base Load = Typical Load = Residual Load =

	Cooling Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-0 R-0 -000 4.17 R-7 -2.30 2.12 R-11 -2.63 1.83 R-13 -3.06 1.44 R-19 -3.27 1.26 R-27 -3.66 .91 R-34 -3.90 .70	Slope(DD) 916.92 Curve(DDS) -26.462 Heated Basement (/ft)		Craw! (/sf)	R-0 3.86 R-11 flr 1.18 4.62 R-19 flr 1.28 4.69 R-30 flr 1.39 4.76 R-38 flr 1.41 4.77 R-49 flr 1.48 4.82 Intercept 4.861 Slope(DD) -123.07 Curve(DDS) -14.120	Window U-value (/sf) 1-Pane .00 2.51 2-Pane28 .99 3-Pane35 .62 R-1043 .18	Slope(DD) 76.17 Curve(DDS) .716 34.35 MBtu 14.09 MBtu 30 MBtu
ding Series Two	ŭ	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 8.25 R-7 -7.60 3.32 R-11 -8.81 2.53 R-19 -9.90 1.82 R-22 -10.33 1.54 R-38 -11.24 1.55 R-49 -11.56 .75 R-60 -11.76 .61	Slope(DD) 1707.97 Curve(DDS) -53.389 Slab (/ft)	R-0 -6.89 -5.71 R-5 2ft -6.87 -5.59 R-6 4ft -6.87 -4.38 R-10 2ft -6.85 -5.47 R-10 4ft -6.60 -3.96 Intercept .0000 Slope(DD) -1202.22 Curve(DDS) 58.852	Unheated Basement (/sf)	R-0 R-11 flr83 3.32 R-19 flr17 3.75 R-30 flr26 4.03 Intercept 4.755 Slope(DD) -979.40 Curve(DDS) 69.992	Infiltration (/sf flr) ELF Ach .0007(.41) .00 1.95 .0005(.29)86 1.40 .0003(.18) -1.72 .84	Slope/.001ELF 2.792 Curve/.001ELF000 Base Load = Typical Load = Residual Load =
One Story Prototype Sid	eating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .000 18.67 R-7 -10.63 9.22 R-11 -12.14 7.87 R-13 -14.03 6.19 R-19 -14.96 5.36 R-27 -16.63 3.87 R-34 -17.66 2.96	Slope(DD) 3861.13 Curve(DDS) -72.401 Heated Basement (/ft)	R-Ø -8.27 79.81 R-5 4ft -12.14 56.50 R-5 8ft -13.63 47.52 R-10 4ft -13.13 50.53 R-10 8ft -15.40 36.86 Intercept 7.685 Slope(DD) 2772.52 Curve(DDS) -25.374	Crawl (/sf)	R-0 R-11 flr -17.66 2.51 R-19 flr -20.62 .58 R-38 flr -22.8459 R-49 flr -22.8486 R-49 flr -24.03 -1.63 Intercept -3.429 Slope(DD) 3636.99 Curve(DDS) -47.453	Window U-value (/sf) 1-Pane .00 88.77 2-Pane -8.60 42.23 3-Pane -11.44 26.87 R-10 -14.78 8.79	Slope(DD) 3775.14 Curve(DDS) -15.629 100.98 MBtu 43.32 MBtu .86 MBtu
Nashville TN WYEC	He	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 20.05 R-7 -18.48 8.05 R-11 -21.43 6.14 R-19 -24.08 4.41 R-30 -26.51 2.84 R-38 -27.35 2.29 R-49 -28.10 1.81 R-60 -28.58 1.49	Slope(DD) 4135.22 Curve(DDS) -127.039 Slab (/ft)	R-Ø R-S 2ft -16.17 32.22 R-5 4ft -17.38 24.93 R-1Ø 2ft -16.79 28.49 R-1Ø 4ft -18.39 18.85 Intercept .000 Slope(DD) 4953.52 Curve(DDS) -58.774	nheated Basement (/sf	R-0 R-11 flr -17.72 2.47 R-19 flr -20.25 .83 R-30 flr -21.8723 Intercept -3.042 Slope(DD) 3812.59 Curve(DDS) -300.656	Infiltration (/sfflr) ELF Ach .0007(.75) .00 11.58 .0005(.56) -5.27 8.16 .0003(.33)-10.40 4.83	Slope/.001ELF 15.747 Curve/.001ELF 1.136 Base Load = Typical Load = Residual Load =

		omponent (KBtu)	(s + 6) (s +	586.Ø1 11.957 (/ft)	22 22 25 25 25 25 25 25 25 25 25 25 25 2	(/sf)	4 . 02 6 . 15 6 . 15 7 . 24 7 . 23 1 . 24 8 . 33 3 . 84 8 . 84	(/sf) -6.17 -5.68 -3.76 -1.51	-683.3 <i>0</i> 17.036
	70	Delta Co (MBtu)	- 1	e(DD) e(DDS) asement	-1.25 -1.38 -1.39 -1.42 -1.46 -(DD) •(DD)		.00 .58 .68 .74 .75 .75 .75 .79 .79	-value -000. -007. -007. -007.	e(DD) e(DDS) MBtu MBtu MBtu
	Cooling Load		X X X X X X X X X X X X X X X X X X X	Slop Curv Heated B		Crawl	R-6 R-11 R-130 R-300 R-300 R-300 R-17 R-17 R-17 R-17 R-17 R-17 R-17 R-17	Window U. 1-Pan 2-Pan 3-Pan R-10	Slope Curve 22.91 14.90 6.75
	Coo	Component (KBtu)	7.90 7.90 3.02 2.25 1.55 1.29 73 .73	396.7Ø 1Ø.921 (/ft)	9.6.5.68.7	S	1.93 3.82 4.23 4.50 5.184 5.184 54.481	(sf flr) 1.79 1.29 .78	2.625 104 e Load = Load = Load =
Two		Delta Com (MBtu)	00 -2.92 -3.39 -3.39 -4.17 -4.30 -4.30	(00) 13 (008) -	-2.61 -2.56 -2.53 -2.51 -2.51 (00) (D0)	Ē	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	tion (/ 00)60) -1.21	ELF ELF Bas Typica esidua
Series		۵	7	Slope Curve Slab	2ft 8 2ft 8 2ft 8 4ft Slope Curve	nheated	R-0 R-11 flr -1 R-19 flr -1 R-3Ø flr Slope(DD) Slope(DD)	Infiltrat ELF Ach 0007(.44) 0005(.31) 0003(.19)	Slope/.0011 Curve/.0011
Siding		ent itu)	sf) .69 .26 .61 .46	13 578 ft)	992 992 117 7 5 5 5 5 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6	_		sf) .65 .91	. 60 505 505
rototype		E (KB	() 18 179 18 179 18 179 18 18 18 18 18 18 18 18 18 18 18 18 18	3358 23.	69 81 37 39 37 39 76 42 76 30 2202 -9.	>	66 13 46 2 49 2 67 - 28 -1 58 -1 2996:	(/ 60 77 61 31 33 19	25Ø5 16.
Prote	70	Deita Co (MBtu)	470000	e(DD) e(DDS) asement	-6.5.6 -6.5.6 -6.00 -6.0		-6.1 -7.1 -7.1 -8.6 -8.6 -8.6 -8.6 -8.6 -8.6 -8.6 -8.6	value -6.	e(DD) e(DDS) MBtu MBtu MBtu
d Town	ing Load		Wall R-0 R-11 R-11 R-13 R-27 R-27	Slope Curve	. C - c - c - c - c - c - c - c - c - c -	 ¥ & L		indow U 1-Pan 2-Pan 3-Pan R-10	Slope Curve 48.31 h 21.35 h
ž	Heat	ent tu)	sf) 31 32 33 37 37 37 37 37 37 37	21 78 t) H	ααααα (τ) C	746 746 746 746 746 746 746 746 746 746	flr) W 63 73 78	33 71 and III
WYEC		ompon (KB	20 20 20 20 20 20 20 20 20 20 20 20 20 2	4008. -52.8 (/f	300 100 100 100 100 100 100 100 100 100	ant (/s	69 5. 91 1. 59 . 63	(/sf 36 10. 35 6.	Hase Lo
Z Z		Delta Co (MBtu)		(00) (008)	-6 -7 -7 -7 -7 -7 -7 -7 -9 (00)	Ваѕешел	fir -4.6 9 fir -7.E 7 fir -8.2 1 Intercept Slope (DD) Curve (DDS)	ation h 8) .0 8) -3.9 5) -7.4	.001ELF .001ELF Typi
Nashville		_	C	Slope Curve	25 25 3 25 10 5 0 10 5 0 10 6	Unheated	R-0 R-11 flr R-19 flr R-30 flr Inte	Infiltra ELF Ach .0007(.78) .0005(.56) .0003(.35)	Slope/.i

	Cooling Load	Delta Component (MBtu) (KBtu)	/sf /sf	-757 1.4	-1165	-13 - 76 .8	-2786 .5	-3489 .4		Slope(DD) 481.82 Curve(DDS) 21.707	Heated Basement (/ft)		-1.04 24	-5 8ft -1.16 20	-16 4ft -1.18 20	Intercept 18 Slope(DD) 10' Curve(DDS) 1			R-11 flr .75 4.22 R-30 flr .84 4.37 R-38 flr .88 4.42 R-38 flr .88	149 fir .90 4.4 Intercept 4.56	urve(DDS) -154.6 urve(DDS) -30.76	Window U-value (/sf)	600	-rane .28 -3.0 -10 .52 -1.2	Slope(DD) -565.59 Curve(DDS) 14.449	20.94 MBtu 13.93 MBtu 6.43 MBtu
ing Series Two	°S	Delta Component (MBtu) (KBtu)	/st /	-7 -2.90 2.6	-11 -3.36 1.8 -19 -3.78 1.1	-22 -3.90 .9	-30 -4.06 .6	-36 -4.15 -49 -4.20	-60 -4.23 .4	Slope(DD) 969.53 Curve(DDS) 48.295	Slab (/ft)		6 2ft -1.98 -6.5	-5 4ft -1.95 -5.5	-10 4ft -1.92 -4.5	Intercept Slope(DD) -14 Curve(DDS) 6	nent (/sf)	20 1 20 1 1	13 2.76 15 3.21 32 3.50	Intercept 4.292 Slope(DD) -1075.99	urve(DDS) 93.64	iltration (/sf flr)	.0007(.41) .00 1.54 .0005(.29)59 1.05 .0003(.18) -1 13 64	0. 01.1 (01.1)	Slope/.001ELF 1.833 Curve/.001ELF .521	Base Load = Typical Load = Residual Load =
MApartment Prototype Sid	leating Load	Delta Component (MBtu) (KBtu)	<i>•</i>	-7 -3.28 8.5	-11 -3.75 7.6 -13 -4.26 5.4	-19 -4.52 4.6	-2/ -4.93 3.3 -34 -5 18 9 5	21.0		Slope(DD) 3205.89 Curve(DDS) 57.401	Heated Basement (/ft)	(C)	5 4ft -6.84 51	-5 8ft -7.20 40 -10 4ft -7.10 43	-10 8ft -7.57 27	Intercept -3.565 Slope(DD) 2805.61 Curve(DDS) -13.972	Craw! (/sf)	-0 .00 14.	71 2 77 1 38 52 -	49_f F	urve(DDS) 14.7	Window U-value (/sf)	1-Pane . ØØ 77.85 2-Pane -6.73 31.11 3-Pane -8.41 19.46	-10 -10.38 5.7	Slope(DD) 24Ø1.92 Curve(DDS) 2Ø.714	46.08 MBtu 19.94 MBtu 1.39 MBtu
Nashville TN WYEC	Ŧ	Delta Component (MBtu) (KBtu)	0.0	-/ -8.38 8.5 -11 -9.72 6.2	-19 -10.92 4.2	-22 -11.33 3.6	-38 -12.21 2.1	-49 -12.46 1.7	-00 -12.02 1.4	<u> </u>	Slab (/ft)	-6 -6 85 51 7	ft -7.53 28.9	-10 2ft -7.64 25.4	-10 4ft -7.91 16.4	Intercept .0000 Slope(DD) 4143.37 Curve(DDS) -10.063	Unheated Basement (/sf)	-0 -5.68 4.5	R-11 fir -7.48 1.53 R-19 fir -8.09 .51 R-30 fir -8.4814		.urve(DDS) -238.26	i Itra Ach	.0007(.78) .00 9.72 .0005(.56) -3.94 6.43 .0003(.35) -7.40 3.55		Slope/.001ELF 10.312 Curve/.001ELF 5.104	Base Load = Typical Load = Residual Load =

		omponent (KBtu)	(/st)	2.3	1.2	-: °		. 57	4.	8	-28.932	(/ft)	5.79	2.77	2.53	1.93	. 000	126.98	(/8/)		2. c.	3.16	3.27	, .,,	3.461 252.04	œ.	(/sf)	•	O U	 . 4	.11	44.82)
	70	Delta Co (MBtu)		6		ન + ડ લ	7.	-1.97	2.1	(00)	(SQQ)	sement				-3.45		(S00) (00)			20	. –; (1.35	.5	cept (DD) -	(sqq	alue	. '	ø.	17	Ņ	(00) (002)	ללל ניני
	ooling Load	_	Wall	R-6	<u> </u>	7	٠.	R-27	ń	Slope	Curve	Heated Ba	6	-5 4ft	-5 8ft	10 8ft	Inter		Crawl	Ö	-11 fl	-19 41	R-38 flr	-49 fir	Slope (9.10	Window U-v	ć	- Pag-	3-Pane	7	Slope (I	17.02 MB4 5.78 MB4 -2.39 MB4
	O	omponent (KBtu)	(/sf	4.	7.7	. 6	ω.	φı	 4 2 4	974.0	. 4 .	(/ft)	. ი	œ c	ש מ	-1.62	.85	-/93.08 36.670	t (/sf)	Œ	i ø	2.39	•	č	800.37	7.42	(/sf fir)	ă	. 62	.37		1.234	e Load =
s Two		Delta Co (MBtu)	ing	9	. 4	6	Ñ	ų,	- 5.95	(00)	(600)		2	-4.16	. 4 	0	cept 2007	(00) (00s)	Basement	7	55	01		+		(500)	ion	6	- 38	7		IØ1ELF IØ1ELF	Base Typical Residual
Series			- e o	3 C	7	7	ç	in c	R-49	9	• . 5 .	Slab	6	ף ול מו	-10 2f	-10 4ft	ter	9 0 0 0 0	Unheated	R-0	-11 fl	K-19 flr R-30 flr		4	Slope	9 / L D	tra	ELF ACH	٣	<u>ښ</u>		Slope/.00 Curve/.00	
type Siding		omponent (KBtu)	25	13.4	11.4	0	 	9 6	† !	56Ø1.43 -87.Ø37	197	(/1t)	88.78	2 4	5	35		34.	(/sf)					7.6	5371.10 -90 041	;	(/sť)	о О	ω·	40.57 13.05		577.95 11.73ø	
/ Prototype	a d	Deita C (MBtu)	Š	5.8	-18.1	-20.8	2.22-	-26.2		e (DD) e (DDS)		n	-12.19	-18.7	-18.3	-20.9	(00) (00)	• (pp2)		0	m u	ი ი	-32.97	cept.	(60) (603)		9016	9.	-13.8	-23.29		(00) (000)	ABtu ABtu Abtu
One Story	Heating Lo		¥a 1.63-19		7	7.	7 9	R-34		Slop	T 0 + 0 0 H		R-6 R-5 4ft	-5 8f	-10 4f	-16 g	Slope	y LO	Crawl	-0	-11 f1	-30 FI	R-38 f-r R-49 f-r	Int	Slope			-Pan	e (R-10		Curve	150.95 MI 49.25 MI 4.24 MI
WYEC	Ι	omponent (KBtu)	(/sf) 29.52	11.7	ω α σ α	יי טע	. 4	3.5	2.5	5917.73 158.266	(/ft)		46.8Ø 19.63	8.	4. Ri.	18	446.4	8	: (/sf)	9.57		-2.74			5486.27 448.327		-	7	12.83		6	1.137	Load III
Σ Σ		Delta ((MBtu)	gu÷	-27.3	-31.7	137.0	-39.1	-40.4	-41.48	•(DD) •(DDS) -		•	-19.16	-24.9	-24.5	rcept	(00)	(DDS)	Basement	12.	. œ	31.1			orope(UU) 5 Curve(DDS) -4		:	Ø.	9 F	•	u ū	- L	Base Typical Residual
New York		•	- 69 - 69 - 69 - 69 - 69	-1	77	10	၊က	'n		Slop	Slab	,	R-5 2ft	-5 4f	-10 21	Inte	Ω	Curv	Unheated	4	R-19 flr	-3Ø f		Inter	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Infiltra	ELF Ach	(88) (88)	. 0003 (38		/ 600	Curve/.001	

	Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 1.93 R-745 1.99 R-1151 .86 R-1361 .65 R-2772 .41 R-3476 .33	Slope(DD) 418.000 Curve(DDS) -11.076 Heated Basement (/ft)	-6 4ft -1.10 3. -5 8ft -1.11 1. -5 8ft -1.10 1. -10 4ft -1.14 . -10 8ft -1.14 . Slope(DD) 20. Curve(DDS) 1.8	R-0	Window U-value (/sf) 1-Pane .00 -2.26 2-Pane .04 -1.98 3-Pane .14 -1.31 R-10 .2552	Slope(DD) -234.84 Curve(DDS) 5.657 11.75 MBtu 7.76 MBtu 2.92 MBtu
ing Series Two	000	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 3.73 R-7 -1.37 1.44 R-11 -1.59 1.07 R-19 -1.79 .74 R-22 -1.86 .63 R-38 -2.09 3.39 R-49 -2.05 3.30 R-60 -2.05 .24	Slope(DD) 684.59 Curve(DDS) -9.481 Slab (/ft)	-1.62 -11.59 -1.56 -10.09 -1.50 -8.59 -1.54 -9.59 -1.48 -8.09 pt -4.334 D) -1167.66 DS) 46.832	1 flr -1.00 .26 9 flr -15 2.18 0 flr .35 2.51 Intercept 3.445 Slope(DD) -1289.79 Curve(DDS) 130.436	Infiltration (/sf flr) W ELF Ach .0007(.70) .00 .90 .0005(.50)26 .69 .0003(.30)56 .44	Slope/.001ELF 1.583 Curve/.001ELF417 Base Load = Typical Load = Residual Load =
Mid Town Prototype Sidi	ating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 R-0 R-7 -6.82 12.89 R-11 -7.79 10.85 R-13 -8.91 R-19 -9.47 7.33 R-27 -10.46 5.26 R-34 -11.06 3.99	Slope(DD) 5156.81 Curve(DDS) -18.457 Heated Basement (/ft)	R-0 -6.77 108.85 R-5 4ft -8.47 66.35 R-5 8ft -8.96 54.10 R-10 4ft -8.87 56.35 R-10 8ft -9.58 38.60 Intercept .000 Slope(DD) 3726.98 Curve(DDS) -26.237 Crawl	-0 -11 flr -9.43 2.8 -13 flr -10.99 .2 -30 flr -11.92 -1.3 -49 flr -12.13 -1.6 Intercept -5.09 Slope(DD) 4806.33 Curve(DDS) -38.46	Window U-value (/sf) 1-Pane .00 126.72 2-Pane -10.51 53.73 3-Pane -13.38 33.82 R-10 -16.75 10.40	Slope(DD) 4383.39 Curve(DDS) 15.776 72.95 MBtu 21.81 MBtu .07 MBtu
New York NY WYEC	Неа	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 30.68 R-7 -11.27 11.89 R-11 -13.07 8.89 R-19 -14.69 6.19 R-30 -16.04 3.95 R-38 -16.50 3.18 R-49 -16.90 2.51 R-60 -17.16 2.08	Slope(DD) 5697.80 Curve(DDS) -88.352 Slab (/ft)	R-0 R-5 2ft -10.29 20.85 R-5 4ft -10.59 13.35 R-10 2ft -10.49 15.85 R-10 4ft -10.90 5.60 Intercept -14.874 Slope(DD) 5743.60 Curve(DDS) -37.943	fir -10.00 1. fir -11.08 1. fir -11.78 -1. Intercept -4.3 Slope(DD) 4420.1	nfiltrati LF Ach 007(.89) 005(.66) 003(.39)-	Slope/.001ELF 22.292 Curve/.001ELF 2.917 Base Load = Typical Load = Residual Load =

		ent tu)	sf) 73 61 53 38	58 20 t)	558 558 558 568 668 7	555 555 565 57 74 75 75	.f.) 27 93 68 68	17 52
		ompone (KBt) ₁	387. -12.3 (/f	11. 1. 22. 22. 2.3	3 3.2 8 3.2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	, 4	11.7
	_	elta ((MBt∪)	0.2 0.2 0.0.0.0.0 0.0.0.0.0 0.0.0.0.	(DD) (DDS) sement	98 -1.88 -1.83 -1.83 -1.63 (DD)	.00 .48 .48 .70 .74 .74 .74 .74 .00)	.000 .055 .24 .47	(DD) (DDS) (Btu (Btu
	ng Load	۵	**************************************	Slope Curve	6 4ft 5 4ft 10 4ft 10 8ft 10 8ft Slope Curve	11 flr 19 flr 30 flr 38 flr 1 Inter Slope Curve	ndow U-1-Pane 2-Pane 3-Pane R-18	Slope Curve 10.60 M 7.01 M 2.67 M
	Coolin			Ŧ	4444	~~~~~~ 	.¥ i¥	H H H
		omponent (KBtu)	(/sf) 3.65 3.05 1.395 1.003 1.	630.43 -2.619 (/ft)	-7.75 -6.25 -5.42 -6.08 -4.58 -1.346 1046.39 42.745 t (/sf)	2.1 2.72 2.72 89.5223	.84 .61 .37	1.271 104 104
o* ⊢		elta Cor (MBtu)	19 .000 -1.35 -1.57 -1.76 -1.84 -1.94 -2.00	(saa) (aa)	-1.28 -1.24 -1.23 -1.23 -1.19 -1.19 -1.00 -1.19 -1.10	90 21 .033 .17 .000)		1ELF 1ELF Base Typica Residua
Series		۵	Ceili R-6 11 R-11 R-12 R-22 R-38 R-49 R-49	Slope Curve Slab	2ft 4ft 2ft 2ft Inter Slope Curve	1 fir 9 fir Ø fir Interc Slope(Curve(Filtrat Ach 37(.70) 35(.50) 33(.30)	ope/.001
6					RR-5 R-5 R-10 Cnh 100	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Infi ELF .0007 .0005	O Con
ibis e		onent KBtu)	(/sf) 27.22 12.64 10.56 8.22 7.06 5.07 3.84	918.20 26.437 (/ft)	26.90 75.57 61.23 63.90 43.57 .000 65.66 6.224	19.82 3.70 1.05 60 97 -2.05 13.76	(/sf) 26.82 53.00 33.31 10.15	68.01 0.291
rototype		Comp (comp	662 662 662 662 663 664	4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 68 . 68 . 27 . 25 . 48 . 12 . 58	.63 .47 .88	4.2
α.	ъ	Delta (MBti	471111	e(DD) e(DDS) asement	-18 -18 -18 -18 -18 -18 -18 -18 -18 -18		-valu 6 - 10 6 - 13 15	e (DD) e (DDS) MBtu MBtu MBtu
MApartment	Loa		- 113 - 13 - 13 - 13 - 13 - 13	ο r σ > α		LLLLLOA>	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 8 2 8
	CD.		≱ مخضخ مخضخ مخضخ	S Cu	484852	S - + + + +	≱	S
МАраг	aating				4 00 4 00 E — 2		¥indo 21 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2	S 68 9.90 4.
	ټ.	ponent (KBtu)		8.471 C 6.471 C (/ft) Heate	61.57 R-0 32.23 R-5 4 23.90 R-5 8 26.90 R-10 4 115.73 R-10 8 6.908 In 6.908 Cu 9.884 Cu	.35 . R-0 .507 R-11 fl .50 R-30 fl R-38 fl R-49 fl R-49 fl S-564 S-0 .64 S-0 S-0 S-0 S-0 S-0 S-0 S-0 S-0 S-0 S-0	sf flr) Window 16.71 1-P 11.55 2-P 6.70 3-P R-1	3.802 Cu Cuad = 68.9 Load = 19.9
WYEC MApar	eati	a Compone tu) (KBt	(/sf) 1.05 29.94 RR 29.94 RR 2.81 8.59 RR 4.40 5.95 RR 5.70 3.71 RR 6.15 2.40	5) 5443.63 S -66.471 C (/ft) Heate	.05 61.57 R-0 .93 32.23 R-5 4 .18 23.90 R-5 8 .09 26.90 R-10 4 .42 15.73 R-10 8 .6-6.908 In .6-6.908 Cu .70 -59.884 Cu	65 2.07 R-11 fl 59 .50 R-19 fl 2050 R-30 fl R-38 fl R-38 fl R-49 fl 3901.64 Slo	n (/sf flr) Window .00 16.71 1-P 6.18 11.55 2-P 2.00 6.70 3-P R-1	21.208 3.802 Cu 3ase Load = 68.9 ical Load = 19.9
NY WYEC	eati	ompone (KBt	ing (/sf) W -11.05 11.53 -12.81 8.59 R -14.40 5.95 R -14.95 5.01 R -15.70 3.01 R -16.16 3.01 R -16.52 2.40	e(DDS) 5443.63 S e(DDS) -66.471 C (/ft) Heate	-10.05 61.57 R-0 -10.93 32.23 R-5 4 -11.18 23.90 R-5 8 -11.09 26.90 R-10 4 -11.42 15.73 R-10 8 R-10 6402.25 SUDS) -5.908 Towl	65 2.07 R-11 fl 59 .50 R-19 fl 2050 R-30 fl R-38 fl R-38 fl R-49 fl 3901.64 Slo	ion (/sf flr) Window .00 16.71 1-P -6.18 11.55 2-P -12.00 6.70 3-P R-1	ELF 21.208 SI ELF 3.802 Cu Base Load = 68.9 Typical Load = 19.9
WYEC	eati	elta Compone (MBtu) (KBt	ng (/sf) W -11.05 11.53 R -12.81 8.59 R -14.40 5.95 R -14.95 5.01 R -15.70 3.77 R -16.52 2.40	(DDS) 5443.63 S (DDS) -66.471 C (/ft) Heate	-10.05 61.57 R-0 -10.93 32.23 R-5 4 -11.18 23.90 R-5 8 -11.42 15.73 R-10 8 R-10 R-10 R-10 R-10 R-10 R-10 R-10 R-10	-8.08 6.35 R-0 10.65 2.07 R-11 fl 11.59 .50 R-19 fl 12.2050 R-30 fl R-38 fl R-49 fl D) 3901.64 Slo Our	ion (/sf flr) Window .00 16.71 1-P -6.18 11.55 2-P -12.00 6.70 3-P R-1	ELF 21.208 SI ELF 3.802 Cu Base Load = 68.9 Typical Load = 19.9 esidual Load =4

	ooling Load	Delta Component (MBtu) (KBtu)	24.0.4.4	Slope(DD) 909.89 Curve(DDS) -22.057 Heated Basement (/ft)	-0 -4.03 19. -5 8ft -4.84 15. -10 8ft -5.09 13. -10 8ft -5.30 13. -10 8ft -5.30 13. Slope(DD) 379. Curve(DDS) -2.33	Crawl R-0 R-11 flr .26 4.94 R-19 flr .27 4.94 R-38 flr .34 4.99 R-49 flr .36 5.00 R-49 flr .36 5.00 R-49 flr .36 5.00 R-49 flr .36 5.00 Curve(DDS) -80.06 Curve(DDS) 5.038	Window U-value (/sf) 1-Pane .00 5.55 2-Pane71 1.70 3-Pane83 1.03 R-1098 .24	Slope(DD) 92.43 Curve(DDS) 4.455 39.81 MBtu 18.84 MBtu .74 MBtu
ng Series Two	°,	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 7.54 R-7 -6.93 3.04 R-11 -8.04 2.32 R-19 -9.03 1.68 R-22 -9.43 1.42 R-38 -9.97 1.47 R-38 -10.29 .86 R-49 -10.56 .69 R-60 -10.73 .57	Slope(DD) 1571.39 Curve(DDS) -50.489 Slab (/ft)	6 2ft -7.61 -1.6 5 4ft -7.77 -2.5 10 2ft -7.79 -2.1 10 4ft -7.79 -2.6 Intercept -1.67 -1.9 Slope(DD) -763.3 Curve(DDS) 55.05	R-0 -4.03 2.15 R-11 flr -1.56 3.76 R-19 flr -1.01 4.11 R-30 flr66 4.34 Intercept 4.926 Slope(DD) -782.35 Curve(DDS) 47.047	Infiltration (/sf flr) ELF Ach .0007(.64) .00 3.41 .0005(.45) -1.45 2.47 .0003(.29) -2.94 1.50	Slope/.001ELF 5.097 Curve/.001ELF325 Base Load = Typical Load = Residual Load =
One Story Prototype Sidi	Heating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-1 R-1 R-11 -12 90 8.19 R-13 -14.88 6.43 R-19 -15.86 5.56 R-27 -17.59 4.01 R-34 -18.66 3.06	Slope(DD) 3987.38 Curve(DDS) -61.393 Heated Basement (/ft)	14074.7. 140401.7.	-0 .00 16.0 -11 flr -18.95 3. -19 flr -22.10 1.0 -30 flr -23.96 -49 flr -25.62 Intercept -2.5.5 Slope(DD) 3777.0 Curve(DDS) -32.19	Window U-value (/sf) 1-Pane .00 95.40 2-Pane -9.81 42.31 3-Pane -12.69 26.75 R-10 -16.07 8.44	Slope(DD) 3585.71 Curve(DDS) 1.055 107.79 MBtu 43.37 MBtu
Oklahoma City OK WYEC		Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 21.07 R-7 -19.51 8.41 R-11 -22.62 6.38 R-19 -25.42 4.57 R-20 -26.50 3.87 R-30 -27.94 2.93 R-38 -28.81 2.37 R-49 -29.58 1.87 R-60 -30.08	Slope(DD) 4265.52 Curve(DDS) -119.912 Slab (/ft)	R-0 -16.69 47.97 R-5 2ft -20.13 27.25 R-5 4ft -21.07 21.58 R-10 2ft -20.76 23.45 R-10 4ft -22.03 15.80 Intercept .000 Slope(DD) 4854.82 Curve(DDS) -53.133	-0 -11 flr -20.01 3.0 -19 flr -22.42 1.4 -30 flr -23.97 .4 Intercept -2.25 Slope(DD) 3656.73	ration ch 87) 52) -5 36)-11	Slope/.001ELF 17.337 Curve/.001ELF 1.705 Base Load = Typical Load = Residual Load =

	Cooling Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-0 R-796 R-1 R-11 -1.09 .56 R-13 -1.17 .39 R-19 -1.21 .31 R-27 -1.27 .19 R-34	Slope(DD) 96.15 Curve(DDS) 80.573 Heated Basement (/ft)	-6 4ft -1.56 33.9 -5 8ft -1.79 28.2 -10 4ft -1.84 26.9 -10 8ft -1.92 24.9 Intercept 20.79 Slope(DD) -1.84 Curve(DDS) -1.84	Craw! (/sf) R-0	Window U-value (/sf) 1-Pane .00 -2.34 2-Pane29 -4.35 3-Pane09 -2.95 R-10 .15 -1.30	Slope(DD) -596.10 Curve(DDS) 19.226 26.86 MBtu 18.36 MBtu 8.33 MBtu
ling Series Two	ŭ	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø 6.67 R-7 -2.58 2.37 R-11 -2.99 1.69 R-19 -3.36 1.07 R-22 -3.45 1.07 R-30 -3.58 71 R-38 -3.65 .59 R-49 -3.75 .42 R-6Ø -3.81 .32	Slope(DD) 945.85 Curve(DDS) 30.194 Slab (/ft)	2ft -2.96 -1. 4ft -2.97 -1. 0 2ft -2.95 0 4ft -2.95 1 1 1 -2.96 -1. 1 1 1 -2.96 -1. Slope(DD) -382. Curve(DDS) 25.8	Unheated Basement (/sf) R-0 R-11 flr63 3.81 R-19 flr39 4.22 R-30 flr23 4.48 Intercept 5.175 Slope(DD) -938.00 Curve(DDS) 72.257	Infiltration (/sf flr) ELF Ach .0007(.67) .00 2.93 .0005(.48) -1.08 2.03 .0003(.29) -2.10 1.18	Slope/.001ELF 3.750 Curve/.001ELF .625 Base Load = Typical Load = Residual Load =
Mid Town Prototype Sid	Heating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-1 R-11 R-13 R-13 R-13 R-13 R-13 R-13	Slope(DD) 3228.02 Curve(DDS) 67.412 Heated Basement (/ft)	4ft -7.21 47.1 8ft -7.56 38.3 0 4ft -7.51 39.6 0 8ft -7.93 29.1 Intercept 7.09 Slope(DD) 2083.0 Curve(DDS) -5.00	R-0 R-11 flr -6.93 3.61 R-19 flr -8.01 1.81 R-30 flr -8.09 .84 R-49 flr -9.1001 Intercept -1.573 Slope(DD) 3007.95 Curve(DDS) 49.695	1-Pane .00 81.85 2-Pane -7.40 30.46 3-Pane -9.06 18.91 R-10 -11.02 5.32	Slope(DD) 2180.28 Curve(DDS) 34.85Ø 51.77 MBtu 22.17 MBtu 3.01 MBtu
Oklahoma City OK WYEC	Ť	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 22.80 R-7 -8.47 8.68 R-11 -9.82 6.42 R-19 -11.04 4.40 R-22 -11.64 4.40 R-30 -12.01 2.77 R-38 -12.55 2.21 R-49 -12.62 1.77 R-60 -12.79 1.48	Slope(DD) 3996.89 Curve(DDS) -25.622 Slab (/ft)	2ft -8.34 18.8 4ft -8.52 14.3 2ft -8.65 15.8 11 11 16.6 15.8 Slope(DD) 2798.3 Curve(DDS) 57.63	f r -5.80 5. f r -7.83 2. f r -8.46 1.60 f r -8.86 f r -8.86 Intercept -1.4 Slope(DD) 2514	Infiltration (/sf flr) ELF Ach .0007(.87) .00 10.57 .0005(.60) -4.45 6.86 .0003(.37) -8.24 3.71	Slope/.001ELF 10.291 Curve/.001ELF 6.875 Base Load = Typical Load = Residual Load =

	Cooling Load	ot Delta Component (MBtu) (KBtu)	Wall (/sf) R-Ø .00 2.86 R-763 .88 7 R-1172 .60 4 R-1378 .39 6 R-2782 .29 7 R-2786 .15 8 R-3486 .15	4 Slope(DD) 110.37 6 Curve(DDS) 78.324) Heated Basement (/ft)	R-Ø R-5 4ft -1.36 R-5 8ft -1.61 R-10 4ft -1.65 R-10 8ft -1.65 Intercept 11 Slope(DD) 22 Curve(DDS)	Crawl (/sf) R-0 .00 3.94 R-19 flr .39 4.58 R-30 flr .38 4.58 R-49 flr .38 4.57 Intercept 4.517 Slope(DD) 112.49 Curve(DDS) -43.758	1r) Window U-value (/sf) 1-Pane .00 -1.49 1 2-Pane31 -3.65 3-Pane14 -2.48 R-10 .06 -1.11	Slope(DD) -513.82 Curve(DDS) 17.318 = 24.86 MBtu = 17.26 MBtu = 7.19 MBtu
Series Two		Delta Component (MBtu) (KBtu)	Ceiling (/sf R-0 .864 2.47 R-11 -3.67 1.77 R-19 -3.44 1.11 R-22 -3.56 .91 R-38 -3.71 .76 R-49 -3.86 .55 R-60 -3.90 .38	Slope(DD) 995.24 Curve(DDS) 27.926 Slab (/ft)	2ft -2.44 -2.4 4ft -2.42 -1.8 8 2ft -2.42 -1.8 0 4ft -2.44 -2.4 Intercept -2.42 -1.6 Slope(DD) -595.2 Curve(DDS) 33.32	asted Basement (/sf) -1.36 1.68 1 flr50 3.11 9 flr26 3.52 0 flr10 3.78 Intercept 4.480 Slope(DD) -957.00 Curve(DDS) 80.013	nfiltration (/sf fl LF Ach .00 2.85 007(.64) .101 2.01 003(.29) -1.99 1.19	ope/.001ELF 3.896 rvs/.001ELF .260 Base Load Typical Load Residual Load
MApartment Prototype Siding	iting Load	Delta Component (MBtu) (KBtu)		Slope(DD) 3125.00 Curve(DDS) 96.557 Heated Basement (/ft)	6 4ft -8.08 48.33 R-5.81 90.83 R-5.84 -8.39 38.00 R-10 4ft -8.35 39.33 R-10 8ft -8.73 26.66 R-510pe(DD) 2515.44 Curve(DDS) -6.160	R-0	Window U-value (/sf) In EL 1-Pane .00 81.79 .00 2-Pane -7.60 29.02 .00 3-Pane -9.20 17.91 .00 R-10 -11.08 4.85	Slope(DD) 1960.62 Slo Curve(DDS) 43.093 Cur 49.51 MBtu 20.85 MBtu 3.14 MBtu
Oklahoma City OK WYEC N	Неа	Delta Component (MBtu) (KBtu)	(/s -0	Slope(DD) 3879.24 Curve(DDS) 9.744 Slab (/ft) 1	.19 44.50 .84 23.00 .01 17.33 .95 19.16 .15 12.66 .869 .25 .900	fir -8.46 1.78 fir -9.03 .23 fir -9.39 .23 lope(DD) 2318.52 urve(DDS) -224.199	(/sf fir) 80 10.45 15 6.74 20 3.61	Slope/.001ELF 9.854 Curve/.001ELF 7.240 Base Load = Typical Load = Residual Load =

		component (KBtu)	(/sf) 3.59 1.87 1.62 1.128 1.11 1.81	823.75 -29.054 (/ft)	8.71 4.37 3.89 2.98 2.32 2.07.86	(/sf)	3.43 4.13 4.13 4.20 4.20 4.30 1.44.33	(/sf) 4.05 1.99 1.27	182.26 -1.096
	þe	Delta Co (MBtu)	-1.08 -1.093 -2.08 -2.08 -2.08 -3.12 -3.13	pe(DD) ve(DDS) Basement	-3.83 t -4.53 t -4.63 t -4.78 t -4.89 ercept pe(DD) ve(DD)		.00 .96 	J-value .000 38 51	pe (DD) ve (DDS) MBtu MBtu MBtu
	Cooling Lo		8	Slo Cur Heated	R-6 R-5 R-5 8-16 8-16 10 8ft Intel S-100 Curve	Crawi	R-6 R-11 fl R-30 fl R-38 fl R-49 fl S-07 S-07 Cury	Window U	Slo Cur 26.80 9.47
	J	omponent (KBtu)	6.56 6.56 2.69 2.08 1.52 1.52 1.29 79 .79	1435.75 -55.555 (/ft)	-5.75 -5.51 -4.85 -5.39 -4.49 -782.46 41.095	t (/sf)	2.70 3.19 3.50 4.327 1126.95 90.893	(/sf flr) 1.72 1.25	2.630 243 243
s Two		Delta Co (MBtu)	. 5 . 96	(00) (00s)	-6.23 -6.19 -6.19 -6.17 -6.17 -6.02 e(DD)	Basemen	11.11 37 11 11	tion .000 72 1.47	001ELF 001ELF Base Typica Residua
ing Serie		_	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Slope Curve Slab	R-6 R-5 R-5 R-16 R-10 R-10 Aft R-10 Aft Curve	Unheated	R-11 flr R-19 flr R-3Ø flr Intercep Slope(DD Curve(DD	Infiltra ELF Ach .0007(.58) .0005(.42)	Slope/.curve/.c
P S P		omponent (KBtu)	(/sf) 32.24 15.74 13.39 10.56 9.15 6.58 5.00	6532.25 100.028 (/ft)	108.70 72.74 60.27 63.22 43.76 .000 4463.37	(/sf)	20.11 1.91 -1.26 -3.30 -3.77 -5.11 -8.178 6316.58	(/sf) 154.62 73.77 46.94 15.38	6607.56 -28.444
Prototyp	ъ	Deita Co (MBtu)	-18.54 -21.18 -24.37 -25.95 -38.84	e(DD) e(DDS) - asement	-12.93 -18.96 -20.97 -20.48 -20.48 -23.71 e(DD) e(DDS)		.000 -28.044 -32.92 -36.06 -36.78 -38.85 -00t (00)	-value 6 .000 6 -14.94 6 -19.90	e(DD) e(DDS) MBtu MBtu MBtu
One Story	ating Loa	_	X R R R R R R R R R R R R R R R R R R R	Slope Curve Heated B	R-6 R-5 R-5 R-18 R-10 R-10 Intt S-10 S-02 CUT	Crawl	R-0 R-11 flr R-19 flr R-38 flr R-49 flr Inter Slope	Window U. 1-Pane 2-Pane 3-Pane R-10	Slope Curve 172.10 h 56.49 h 5.69 h
WYEC	H OH	mponent (KBtu)	(/sf) 34.31 13.70 10.40 7.45 6.31 4.78 3.86 3.04	6957.45 197.385 (/ft)	56.77 24.18 14.78 18.10 4.91 4.91 -22.786 8396.37	t (/sf)	11.72 1.96 79 -2.55 -7.298 6457.53 536.162	(/sf fir) 19.90 14.10 8.39	27.630 1.137 se Load = al Load = al Load =
		Delta Cor (MBtu)	ing -31.75 -36.82 -41.37 -43.12 -45.47 -46.89 -48.15	e(DD) e(DDS) -1	-21.55 -26.96 -28.52 -27.97 -30.16 rcept e(DD)	Ваѕешел	-12.93 -27.96 -32.18 -34.90 -6(DD) -6(DD)	ation 6) .@@ 9) -8.93 5)-17.72	Ø1ELF Ø1ELF Ba Typic Residu
Omaha NB			0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Slope Curve	R-6 R-5 R-5 2ft R-10 2ft R-10 Intel S-00 Curve	Unheated	R-0 R-11 flr R-19 flr R-30 flr Inter Slope Curve	Infiltre ELF Ach .0007(.86 .0005(.55	Slope/.Øl Curve/.Øl

	a Component tu) (KBtu)	(/sf) .00 2.80 2.80 71 1.31 94 .83 1.00 .70 1.09 .52	502.04 3.326 ont (/ft)	.39 7.40 .58 2.65 .58 2.65 .63 1.40 .64 1.15 .000 .79.44	(/sf) .00 2.81 .43 3.53 .46 3.58 .50 3.64 .51 3.66 .54 3.70 .105.30 .105.30	• (/sf) .000 -1.36 .10 -2.06 .00 -1.39 .1160	-273.81 8.418
7 60 - 00 - 100 0	J	W R R R R R R R R R R R R R R R R R R R	Slope(DD) Curve(DDS) Heated Basemen	R-0 R-5 4ft -1 R-5 8ft -1 R-10 4ft -1 R-10 8ft -1 Slope(DD) Curve(DDS)	Crawl R-0 R-11 flr R-19 flr R-30 flr R-38 flr R-49 flr S-00(DD) Curve(DDS)	Window U-valu 1-Pane 2-Pane - 3-Pane - R-10	Slope(DD) Curve(DDS) : 17.96 MBtu : 11.45 MBtu : 3.97 MBtu
ng Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø .00 6.15 R-7 -2.25 2.40 R-11 -2.61 1.81 R-19 -2.93 1.27 R-22 -3.04 1.08 R-38 -3.29 .67 R-49 -3.38 .62 R-60 -3.44 .42	Slope(DD) 1176.53 Curve(DDS) -23.445 Slab (/ft)	R-0 -2.36 -16.85 R-5 2ft -2.33 -16.10 R-5 4ft -2.28 -14.85 R-10 2ft -2.32 -15.85 R-10 4ft -2.27 -14.60 Intercept -11.546 Slope(DD) -1010.66 Curve(DDS) 47.545	Unheated Basement (/sf) R-0 -1.39 .49 R-11 fir39 2.16 R-19 fir10 2.64 R-30 fir .08 2.94 Intercept 3.771 Slope(DD) -1127.32 Curve(DDS) 95.179	Infiltration (/sf flr) ELF Ach .0007(.54) .00 1.68 .0005(.38)54 1.23 .0003(.23) -1.11 .76	Slope/.001ELF 2.625 Curve/.001ELF312 Base Load = Typical Load = Residual Load =
Mid Town Prototype Sidi ating Load		Waii (/sf) R-0 R-7 R-7 R-11 -9.01 R-13 R-13 R-10.33 9.89 R-19 -10.99 R-27 R-27 -12.12 R-34 -12.82 4.67	Slope(DD) 6024.22 Curve(DDS) -28.456 Heated Basement (/ft)	R-Ø -7.40 130.17 R-5 4ft -9.47 78.42 R-5 8ft -10.06 63.67 R-10 4ft -9.96 66.17 R-10 8ft -10.79 45.42 Intercept .000 Slope(DD) 4454.47 Curve(DDS) -30.928	R-0 R-11 flr -10.40 3.68 R-19 flr -12.18 .71 R-30 flr -13.25 -1.08 R-38 flr -13.50 -1.49 R-49 flr -14.21 -2.67 Intercept -5.465 Slope(DD) 5629.07 Curve(DDS) -90.830	Window U-value (/sf) 1-Pane .00 140.00 2-Pane -11.35 61.18 3-Pane -14.60 38.62 R-10 -18.42 12.08	Slope(DD) 5121.76 Curve(DDS) 6.868 82.80 MBtu 25.06 MBtu 1.76 MBtu
Omaha NB WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 35.65 R-7 -13.07 13.87 R-11 -15.16 10.40 R-19 -17.03 7.27 R-22 -17.70 6.15 R-36 -19.15 3.74 R-49 -19.62 2.95 R-60 -19.93 2.44	Slope(DD) 6706.65 Curve(DDS) -116.857 Slab (/ft)	ft -11.66 23. ft -12.02 14. ft -11.90 17. ft -11.98 17. ft -12.38 5. tercept -18.6 ope(DD) 7154.	Unheated Basement (/sf) R-0 R-11.09 2.53 R-19 flr -11.09 2.53 R-30 flr -13.1286 Intercept -4.523 Slope(DD) 5039.74 Curve(DDS) -480.784	Infiltration (/sf flr) ELF Ach .0007(.82) .00 18.46 .0005(.61) -6.78 12.81 .0003(.37)-13.20 7.46	Slope/.001ELF 23.750 Curve/.001ELF 3.750 Base Load = Typical Load = Residual Load =

Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .000 2.78 R-747 1.31 R-1153 1.09 R-1361 .85 R-2772 .53 R-3476 .40	Slope(DD) 513.81 Curve(DDS) .652 Heated Basement (/ft)	R-0 -1.24 8.11 R-5 4ft -1.36 3.95 R-5 8ft -1.37 3.78 R-10 4ft -1.39 2.95 R-10 8ft -1.42 2.11 Intercept .000 Slope(DD) 197.97 Curve(DDS) .022	Crawl (/sf)	R-0 .00 2.47 R-11 flr .54 3.37 R-19 flr .59 3.46 R-30 flr .62 3.51 R-49 flr .63 3.52 Intercept 3.607 Slope(DD) -102.00 Curve(DDS) -23.266	Window U-value (/sf) 1-Pane .00 -2.98 2-Pane15 -3.99 3-Pane .04 -2.68 R-10 .26 -1.14	Slope(DD) -520.60 Curve(DDS) 15.445	16.08 MBtu 10.29 MBtu 3.38 MBtu
Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 5.78 R-7 -2.18 2.15 R-11 -2.52 1.58 R-22 -2.93 1.06 R-30 -3.07 .89 R-38 -3.14 .54 R-49 -3.21 .42 R-60 -3.26 .35	Slope(DD) 950.47 Curve(DDS) 4.125 Slab (/ft)	R-0 -1.88 -13.05 R-5 2ft -1.85 -12.22 R-5 4ft -1.82 -11.05 R-10 2ft -1.84 -11.89 R-10 4ft -1.81 -10.72 Intercept -7.750 Slope(DD) -979.80 Curve(DDS) 44.930	Unheated Basement (/sf)	R-0 R-11 flr43 1.76 R-19 flr11 2.29 R-3Ø flr .1Ø 2.63 Intercept 3.589 Slope(DD) -1326.33 Curve(DDS) 137.588	Infiltration (/sf flr) ELF Ach .0007(.58) .00 1.54 .0005(.42)49 1.13 .0003(.25) -1.01 .70	Slope/.001ELF 2.417 Curve/.001ELF313	Base Load = Typical Load = Residual Load =
MApartment Prototype Siding eating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 31.82 R-7 -5.37 14.86 R-11 -6.14 12.45 R-13 -7.01 9.69 R-27 -8.19 5.98 R-34 -8.65 4.54	Slope(DD) 5825.14 Curve(DDS) 16.727 Heated Basement (/ft)	R-0 -8.90 152.23 R-5 4ft -10.75 90.56 R-5 8ft -11.27 73.40 R-10 4ft -11.18 76.40 R-10 8ft -11.90 52.23 Intercept .000 Slope(DD) 5101.15 Curve(DDS) -33.520	Crawl (/sf)	R-0 R-11 flr -10.63 4.74 R-19 flr -12.45 1.70 R-30 flr -13.5920 R-38 flr -13.8520 R-49 flr -14.60 -1.88 Intercept -4.769 Slope(DD) 5894.06 Curve(DDS) -114.152	Window U-value (/sf) 1-Pane .00 140.40 2-Pane -11.50 60.58 3-Pane -14.72 38.19 R-10 -18.51 11.86	Slope(DD) 5016.96 Curve(DDS) 11.417	78.27 MBtu 23.03 MBtu 2.00 MBtu
Omaha NB WYEC M	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 34.84 R-7 -12.80 13.50 R-11 -14.85 10.10 R-19 -16.68 7.04 R-22 -17.35 5.94 R-30 -18.23 4.46 R-38 -18.76 3.57 R-49 -19.20 2.85 R-60 -19.48 2.38	Slope(DD) 6464.09 Curve(DDS) -98.986 Slab (/ft)	R-Ø -11.30 72.40 R-5 2ft -12.34 37.56 R-5 4ft -12.64 27.56 R-10 2ft -12.53 31.23 R-10 4ft -12.94 17.73 Intercept -10.081 Slope(DD) 8314.40 Curve(DDS) -107.372	Unheated Basement (/sf)	R-0 R-11 fir -11.82 2.74 R-19 fir -12.91 .94 R-30 fir -13.6021 Intercept -3.465 Slope(DD) 4489.92 Curve(DDS) -454.357	Infiltration (/sf flr) ELF Ach .0007(.82) .00 18.26 .0005(.61) -6.78 12.61 .0003(.36)-13.15 7.31	Slope/.001ELF 23.063 Curve/.001ELF 4.322	Base Load = Typical Load = Residual Load =

ooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-Ø . ØØ 2.84 R-7 -1.48 1.52 R-11 -1.69 1.33 R-13 -2.02 1.04 R-19 -2.19 .89 R-27 -2.44 .66 R-34 -2.60 .62	Slope(DD) 681.32 Curve(DDS) -28.580 Heated Basement (/ft)	R-Ø -2.97 4.78 R-5 4ft -3.44 1.94 R-5 8ft -3.45 1.88 R-1Ø 4ft -3.57 1.16 R-1Ø 8ft -3.61 .92 Intercept .000 Slope(DD) 72.76 Curve(DDS) 1.081	Crawl (/sf)	R-0 R-11 flr .86 3.00 R-19 flr .96 3.07 R-30 flr 1.09 3.15 R-38 flr 1.12 3.17 R-49 flr 1.21 3.23 Intercept 3.291 Slope(DD) -187.00 Curve(DDS) 4.226	Window U-value (/sf) 1-Pane .000 2.36 2-Pane22 1.17 3-Pane30 .75 R-1039 .25	Slope(DD) 107.44 Curve(DDS)685 20.84 MBtu 7.09 MBtu -2.45 MBtu
ing Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 R-1 R-11 R-11 R-13 R-13 R-2 R-38 R-38 R-38 R-38 R-38 R-49 R-57 R-7 R-7 R-7 R-7 R-7 R-7 R-7 R-7 R-7 R-	Slope(DD) 1170.14 Curve(DDS) -43.084 Slab (/ft)	R-Ø -4.70 -5.65 R-5 2ft -4.57 -4.86 R-5 4ft -4.47 -4.26 R-10 2ft -4.55 -4.74 R-10 4ft -4.65 -4.74 R-10 4ft -4.90 -3.84 Slope(DD) -670.90 Curve(DDS) 29.299	Unheated Basement (/sf)	R-0 -2.97 .51 R-11 fir80 1.92 R-19 fir23 2.30 R-30 fir .14 2.53 Intercept 3.170 Slope(DD) -860.46 Curve(DDS) 66.828	Infiltration (/sf flr) ELF Ach .0007(.55) .00 1.17 .0005(.39)54 .82 .0003(.24) -1.06 .48	Slope/.001ELF 1.558 Curve/.001ELF .162 Base Load = Typical Load = Residual Load =
One Story Prototype Sideating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 -15.52 13.29 R-11 -17.73 11.32 R-13 -20.42 8.92 R-19 -21.76 7.73 R-27 -24.19 5.57 R-34 -25.69 4.24	Slope(DD) 5537.79 Curve(DDS) -92.893 Heated Basement (/ft)	R-0 -11.79 91.65 R-5 4ft -16.79 61.53 R-5 8ft -18.53 51.04 R-10 4ft -18.13 53.45 R-10 8ft -20.85 37.07 Intercept .000 Slope(DD) 3756.49 Curve(DDS) -37.037	Crawl (/sf)	R-0 'R-11 flr -24.56 1.59 R-19 flr -28.68 -1.09 R-30 flr -31.27 -2.77 R-38 flr -31.86 -3.15 R-49 flr -33.57 -4.26 Intercept -6.784 Slope(DD) 5160.17 Curve(DDS) -81.467) Window U-value (/sf) 1-Pane .00 131.25 2-Pane -12.74 62.31 3-Pane -16.93 39.63 R-10 -21.86 12.96	Slope(DD) 5560.54 Curve(DDS) -22.316 = 145.77 MBtu = 46.59 MBtu = 3.09 MBtu
Philadeiphia PA TMY	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 29.25 R-7 -27.15 11.62 R-11 -31.49 8.81 R-19 -35.38 6.28 R-20 -36.84 4.03 R-30 -38.84 4.03 R-39 -40.04 3.25 R-49 -41.10 2.56 R-60 -41.79 2.12	Slope(DD) 5851.26 Curve(DDS) -154.747 Slab (/ft)	R-Ø -18.66 50.26 R-5 2ft -23.21 22.85 R-5 4ft -24.52 14.96 R-1Ø 2ft -24.Ø4 17.85 R-1Ø 4ft -25.87 6.83 Intercept -15.917 Slope(DD) 6735.14 Curve(DDS) -95.899	Unheated Basement (/sf)	R-0 -11.79 9.88 R-11 fir -24.56 1.59 R-19 fir -28.0870 R-30 fir -30.35 -2.17 Intercept -6.122 Slope(DD) 5363.04 Curve(DDS) -437.355	Infiltration (/sf flr) ELF Ach .0007(.81) .00 17.44 .0005(.57) -7.85 12.35 .0003(.34)-15.56 7.34	Slope, 001ELF 24 123 Curve, 001ELF 1.136 Base Load = Typical Load = Residual Load =

		mponent (KBtu)	(,sf) 2.36 1.07 1.06 6.56 56 56 33	405.91 4.144 (/ft)	3.88 1.13 1.13 .38 .000 12.21 2.028	(/sf)	2.14 2.83 3.03 3.03 3.11 3.15 3.360 21.475	(/sf) -2.45 -2.38 -1.58	290.04 7.476
		elta Co (MBtu)	0.1.1.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	(DD) (DDS) sement	-1.13 -1.24 -1.27 -1.27 -1.27 -1.27 (00) (00)		.00 .41 .51 .57 .57 .58 .58 .61 .60)	. 00 . 01 . 01 . 12 . 26	(DD) - (DDS) - Btu Btu Btu
	Cooling Load	۵	₩a-1 R-6 R-7 R-11 R-11 R-13 R-27	Slope (Curve (Heated Bas	R-6 R-5 4ft R-5 8ft R-10 1nterc Slope Curve	Crawi	R-0 R-11 flr R-19 flr R-30 flr R-38 flr R-49 flr Slope(Curve	Window U-vi	Slope (E Curve (E 14.Ø6 MBt 8.91 MBt 3.23 MBt
	ပိ	Component (KBtu)	(/sf) 5.111 2.071 1.58 1.15 7.75 61	1082.61 -37.133 (/ft)	-13.37 -11.87 -10.87 -11.62 -10.12 -6.754 1105.10	: (/sf)	3.077 3.077 3.077 3.954.28	(/sf flr) 1.10 .78 .46	1.500 1.104 1.004d = 1.004d = 1.004d = 1.004d
→		elta ((MΒtυ)		(\$00)	-1.82 -1.76 -1.75 -1.75 -1.69 (00) -1	Basement	-1.13 28 82 82 .14 (00) (00)	ion 39 39	JELF JELF Bas Typica Residua
Series		۵	C C C C C C C C C C C C C C C C C C C	Slope	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Inter Slope Curve	Unheated (R-11 flr R-13 flr R-30 flr Interc	Infiltrat ELF Ach .0007(.55) .0005(.39) .0003(.23)	Slope/.00 Curve/.00
ding									
S:		omponent (KBtu)	(/sf) 26.52 12.59 10.51 10.51 8.21 7.07 5.08	4963.57 -6.124 (/ft)	107.68 64.68 52.43 54.68 37.48 37.83 .000	(/sf)	18.16 3.01 .51 .1.32 -1.32 -2.30 626.17	(/sf) 116.83 50.23 31.86 9.81	147.54 10.520
Prototype		(MBtu)	. 68 -6.68 -7.63 -8.73 -9.27 -10.22	(DD) 4 (DDS) sement	-6.59 -8.31 -8.88 -8.71 -9.48 (DD) 3 (DD) -		.000 -9.09 -10.59 -11.49 -11.69 -12.28 .cept (CDD) 4	. 00 -9.59 -12.26 -15.41	oe(DD) 4 oe(DDS) MBtu MBtu MBtu
Town	ing Load	۵	Was	Slope Curve	A STATE OF THE O	- ×	111 flr 119 flr 30 flr 38 flr 49 flr Interc Slope	ndow U-1 1-Pane 2-Pane 3-Pane R-10	Stope Curve 9.76 M 0.28 M
₹	Heati			Ť	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ü	44444	Wir	11 H H
TMY	I	omponent (KBtu)	(/sf) 30/sf) 11.79 11.79 8.82 6.15 5.19 3.92 3.15 2.49	5656.04 -88.758 (/ft)	49.68 21.93 14.68 17.18 7.18 -12.491 5651.70	t (/sf)	7.18 2.05 .34 75 76 -3.786 4163.75 394.993	15.86 10.90 6.28	19.666 4.272 se Load :
ohia PA		elta ((MBtu)	ing -11.17 -12.96 -14.56 -15.13 -15.13 -15.13 -15.13 -15.13	(SQQ)	-8.91 -10.02 -10.31 -10.21 -10.61 -10.61 (DD) (DD)	Basemen	-6.59 -9.67 -10.69 -11.35 -11.35 (DD)	tion .000 .5.95)-11.49	.001ELF .001ELF Typica Residua
Philadelph		۵	C 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Slope Curve Slab	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 1nter Slope Curve	Unheated	R-11 flr R-13 flr. R-30 flr. Slope Curvel	Infiltra ELF Ach .0007(.80 .0005(.60 .0003(.36	Slope/.Ø Curve/.Ø

4		omponent (KBtu)	(/sf) 2.34	. 6	. 9	4. w.		452.86	4-	4	(/sf)	22.70 2.70 2.91 2.91	Ø.5.00	(/sf -2.7 -1.66	300.65	
	70	Delta Co (MBtu)	0	1 1 0 4 1 0 4 4	1 1	9.0		e(DD) e(DDS)	asement	-1:- -1:- -1:- 00)			.7 (00) (00S)		- (\$99) - (90)	Btu Btu Stu
	ooling Loa		₩ - 8- 0		1 1	3.6		Slop	Heated B	R-6 R-5 R-5 R-6 8ft R-10 8ft Slope Curve	Crawl	R-0 R-11 fr R-19 fr R-30 fr R-38 fr	Ind Sicur	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope	12.56 MI 8.01 ME 2.81 ME
	ပိ	omponent (KBtu)	(/sf) 4.92	- -	•			986.86 -26.6Ø8	(/ft)	-10.45 -8.95 -8.28 -8.78 -7.62 -5.190 -789.11	t (/sf)	.22 1.39 1.77 2.01	2.686 -926.02 86.784	(/sf flr) .79 .49	.625	Coad = Load = Load =
es Two		Delta Co (MBtu)	ling	1 -2.06	4.0	2.6.5	-2.7	(00) (e(00S)	۵	-1.40 -1.36 -1.34 -1.35 -1.35 -1.35 -1.36 (DD)	Basemen	1.056	rcept e(00) e(00S)	ration (ch 55) .00	ØØ1ELF ØØ1ELF	Bas Typica Residua
Seri			Ce:	- 77 7	20	, 60	4 9	Slop	Slat	R-6 R-5 2ft R-10 2ft R-10 Intel Slope	Unheated	R-0 R-11 flr R-19 flr R-30 flr	Intere Slope Curve	Infiltr ELF Ac. .0007(.5 .0005(.3	Stope/.i	
rpe Siding		ponent (KBtu)	(/sf) 26.59 12.34	w 0	œ o			796.42 27.481	(/ft)	125.88 73.88 59.54 62.21 42.38 080.98	(/sf)	19.39 3.84 1.28 1.28 4.4		(/sf) 116.99 49.49 31.14 9.56	129.36 .5.233	
t Prototyp	70	Delta Com (MBtu)	6.2	-5.16	6.2	7.2		• (DD) 4 • (DDS)	sement	-7.86 -9.42 -9.85 -9.85 -9.77 -10.36 (DD) 4		.000 -10.87 -11.81 -12.02	cept (00) 4 (00S) -	. 60 -9.72 -12.36 -15.47	(00) 40 (00S) 1	Btu Btu Btu
MApartment	ating Load	_	Wall R-Ø	R-11 R-13	127	3		Slope	Heated Ba	R-6 R-5 Aft R-18 R-18 Aft R-18 Sft Inter Slope Curve	Crawi	R-0 R-11 flr R-19 flr R-30 flr R-38 flr	Sic	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope	65.95 MI 18.60 MI 1.00 MI
TMY	H	omponent (KBtu)	(/sf) 29.69 11.41	4.8	ნ ~	9 4	. o.	364.80 60.207	(/ft)	62.21 33.04 25.21 28.04 17.21 17.21 49.834	(/sf)	6.29 2.16 .67	-2.955 686.83 67.260	(/sf flr) 15.84 10.90 6.29	19.708 4.167	e Load :: Load :: Load ::
phia PA		Deita Con (MBtu)	ing .00 -100.9	-12 -14	-14.8	-16.0	-16.6	e(DD) 5 e(DDS) -		-9.77 -10.64 -10.88 -10.80 -11.12 -11.12 -10.00 -10.00	Basement	-7.86 -10.34 -11.23 -11.80	(DD) 3 (DDS) -3	ation (h h .00 0) -5.93 6)-11.46	Ø1ELF Ø1ELF	Base Typical Residual
Philade!				1 1	3 2	6 4	9	Slope	Siab	2ft 4ft 3 2ft 3 4ft Into	Unheated	R-0 R-11 fir R-19 fir R-30 fir	Slope Curve	Infiltra ELF Ach .0007(.80 .0006(.60 .0003(.36	Slope/.Ø Curve/.Ø	

	ooling Load	Delta Component (MBtu)	Wall R-0 R-0 R-7 R-7 R-11 R-13 R-13 R-13 R-13 R-13 R-13 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 2608.90 Curve(DDS) -71.211 Heated Basement (/ft)	4 . 10	Crawl (/sf)	R-0 R-11 flr -3.89 6.60 R-19 flr -5.05 5.85 R-30 flr -5.88 5.31 R-38 flr -6.07 5.18 R-49 flr -6.62 4.83 Slope(DD) 1888.09 Curve(DDS) -170.681	Window U-value (/sf) 1-Pane .00 27.96 2-Pane -2.57 14.06 3-Pane -3.51 8.98 R-10 -4.61 3.02	Slope(DD) 1304.47 Curve(DDS) -9.291 89.69 MBtu 43.25 MB+	6.73
ling Series Two	J	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 200.05 R-7 -18.55 8.01 R-11 -21.51 6.08 R-22 -25.19 3.69 R-30 -26.56 2.80 R-38 -27.39 2.27 R-49 -28.14 1.78 R-60 -28.62 1.47	Slope(DD) 4072.36 Curve(DDS) -116.435 Slab (/ft)	R-Ø -12.36 10.20 R-5 2ft -12.67 8.33 R-5 4ft -12.83 7.37 R-1Ø 2ft -12.89 7.01 R-1Ø 4ft -13.13 5.56 Intercept .000 Slope(DD) 2345.73 Curve(DDS) -134.458	Unheated Basement (/sf)	R-0 R-11 flr -6.16 5.13 R-19 flr -6.68 4.79 R-30 flr -7.01 4.57 Intercept 3.940 Slope(DD) 887.23 Curve(DDS) -104.988	Infiltration (/sf flr) ELF Ach .0007(.51) .00 4.52 .0005(.37) -2.00 3.22 .0003(.22) -3.99 1.93	T T 0	Peo J
One Story Prototype Sid	Heating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 R-0 R-1 R-1 R-13 R-13 R-13 R-19 R-2 R-2 R-2 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 900.41 Curve(DDS) 71.850 Heated Basement (/ft)	R-0 -4.40 20.73 R-5 4ft -6.18 10.01 R-5 8ft -6.47 8.26 R-10 4ft -6.51 8.02 R-10 8ft -6.78 6.40 Intercept 2.731 Slope(DD) 325.97 Curve(DDS) 4.531	Craw! (/sf)	R-0 R-11 fir -5.84 1.30 R-19 fir -6.99 .55 R-36 fir -6.99 .55 R-38 fir -7.07 .56 R-49 fir -7.31 .35 Intercept040 Slope(DD) 695.69 Curve(DDS) 59.500) Window U-value (/sf) 1-Pane .00 22.65 2-Pane -2.83 7.34 3-Pane -3.36 4.48 R-10 -3.98 1.11	Slope(DD) 435.78 Curve(DDS) 15.992 = 36.44 MBtu = 9.75 MBtu	1.61
Phoenix AZ WYEC	•	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 9.67 R-11 -10.87 2.62 R-19 -12.21 1.75 R-22 -12.64 1.046 R-30 -13.23 1.048 R-49 -13.58 .869 R-60 -13.99 .59	Slope(DD) 1558.23 Curve(DDS) 12.393 Slab (/ft)	R-Ø -6.81 6.22 R-5 2ft -7.71 .79 R-5 4ft -7.82 .13 R-1Ø 2ft -7.83 .07 R-1Ø 4ft -7.9353 Intercept .000 Slope(DD) -68Ø.83 Curve(DDS) 169.737	Unheated Basement (/sf)	R-0 R-11 flr -6.58 .82 R-19 flr -7.06 .51 R-30 flr -7.37 .31 Intercept208 Slope(DD) 685.46 Curve(DDS) -40.782	Infiltration (/sf flr) ELF Ach .0007(.55) .00 2.18 .0005(.39) -1.56 1.17 .0003(.25) -2.64 .47	3.896 Base Load	peo len

	Cooling Load	Delta Component (MBtu) (KBtu)	all (/sf -0 .00 12.7 -7 -3.00 6.4 -1 -3.43 5.5	3.98 4.25 5.06 2.06	D) 2754. DS) -72.7	-0	>	R-0 R-11 flr -1.36 6.67 R-19 flr -1.80 5.94 R-30 flr -2.12 5.41 R-38 flr -2.19 5.29 R-49 flr -2.40 4.94 Intercept 4.048 Slope(DD) 1876.30	M U-value (/sf Pane .00 27.0 Pane -1.96 13.4 Pane -3.66 8.51	1234.
ng Series Two	ŭ	Delta Component (MBtu) (KBtu)	eiling (/sf -0 .00 21.2 -7 -7.68 8.4 -11 -8.91 6.3	R-19 -10.01 4.52 R-22 -10.43 3.83 R-30 -10.98 2.90 R-38 -11.52 2.34 R-49 -11.62 1.84 R-60 -11.81 1.52	Slope(DD) 4211.30 Curve(DDS) -106.994 Slab	2ft -5.06 7. 2ft -5.09 6. 2ft -5.11 6. 4ft -5.15 6. ntercept .00 lope(DD) 2134. urve(DDS) -121.88	Unheated Basement (/sf)	R-0 -2.29 5.12 R-11 flr -2.36 5.00 R-19 flr -2.49 4.78 R-30 flr -2.58 4.64 Intercept 4.192 Slope(DD) 635.72 Curve(DDS) -88.657	(/sf 600 4 44 2 83 1	Slope/.001ELF 5.375 Curve/.001ELF .521 Base Load = Typical Load = Residual Load =
ype Sidi		omponent (KBtu)	(/sf) 6.43 2.55 2.00	4.0.00	763.06 80.288 (/ft)		(/sf)	4.65 1.45 1.01 .78 .73 .58 .58 657.01 39.596	(/sf) 19.40 6.62 4.07 1.06	424.87 11.738
Mid Town Prototype	sating Load	Deita Co (MBtu)	6.1.	R-13 -2.38 R-19 -2.48 R-34 -2.75	Slope(DD) Curve(DDS) Heated Basement	R-0 R-5 4ft -2.31 R-5 8ft -2.37 R-10 4ft -2.39 R-10 8ft -2.45 Intercept Slope(DD) Curve(DDS)	Crawl	R-0 R-11 fir -1.92 R-19 fir -2.18 R-30 fir -2.35 R-38 fir -2.35 R-49 fir -2.44 Intercept Slope(DD) Curve(DDS)	Window U-value 1-Pane .00 2-Pane -1.84 3-Pane -2.21 R-10 -2.64	Slope (DD) Curve (DDS) 15.72 MBtu 4.97 MBtu 1.75 MBtu
Phoenix AZ WYEC	₩ ₩	Delta Component (MBtu) (KBtu)	eiling (/sf -0 .00 9.5 -7 -3.73 3.3 -11 -4.33 2.3	R-19 - 5.01 1.24 R-30 - 5.01 1.24 R-38 - 5.32 . 72 R-49 - 5.41 . 58 R-60 - 5.46 . 49	Slope(DD) 1276.87 Curve(DDS) 57.367 Slab (/ft)	R-0 -2.59 4.97 R-5 2ft -2.76 .72 R-5 4ft -2.77 .47 R-10 2ft -2.78 .22 R-10 4ft -2.8028 Intercept .0000 Slope(DD) -431.78 Curve(DDS) 123.999	Unheated Basement (/sf)	R-0 R-11 fir -2.36 71 R-19 fir -2.49 .50 R-30 fir -2.57 .36 Intercept000 Slope(DD) 494.68 Curve(DDS) -38.849	Infiltration (/sf flr) ELF Ach .0007(.55) .00 1.88 .0005(.41) -1.02 1.03 .0003(.25) -1.74 .43	Slope/.001ELF .500 Curve/.001ELF 3.125 Base Load = Typical Load = Residual Load =

	ing Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 2.23 R-7 -1.17 1.19 R-11 -1.34 1.04 R-13 -1.59 .81 R-27 -1.92 .52 R-34 -2.05 .40	Slope(DD) 529.95 Curve(DDS) -21.461 ated Basement (/ft)	6 4ft -2.24 2.5 8ft -2.58 10 4ft -2.58 10 4ft -2.58 10 4ft -2.58 10 ft -2.58 10 5lope(DD) -9. Curve(DDS) 1.55	٥	11 flr .88 2.25 19 flr .88 2.25 30 flr 1.00 2.33 38 flr 1.07 2.37 10 flr 1.12 2.41 Intercept 2.474 Slope(DD) -120.474 Slope(DD) -6.612	.00 .00 .05 .08	Slope(DD) 53.04 Curve(DDS)906 3.98 MBtu 3.67 MBtu
g Series Two	Cooling	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 4.29 R-7 -3.89 1.76 R-11 -4.51 1.36 R-19 -5.07 1.00 R-22 -5.31 .84 R-38 -5.63 .63 R-49 -5.98 .50 R-60 -6.07 .35	lope(DD) 938 urve(DDS) -36.	. 17 R- . 60 R- . 96 R- . 96 R- . 81 83	Unheated Basement (/sf) Cr	R-0 R-11 fir51 1.35 R-1 R-19 fir02 1.67 R-1 R-30 fir .30 1.88 R-3 R-3 Intercept 2.434 Slope(DD) -756.26 Curve(DDS) 63.625	(/sf flr) Wi 190 .43 19 .31	Slope/.001ELF .617 Curve/.001ELF000 Base Load = 1 Typical Load = Residual Load = -
One Story Prototype Sidin	eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 -18.69 16.04 R-11 -21.35 13.67 R-13 -24.61 10.78 R-19 -26.22 9.34 R-27 -29.16 6.73 R-34 -30.96 5.12	Slope(DD) 6693.97 Curve(DDS) -115.167 Heated Basement (/ft)	R-0 R-5 4ft -17.59 72.98 R-5 8ft -19.69 60.33 R-10 4ft -19.14 63.65 R-10 8ft -22.38 44.13 Intercept .000 Slope(DD) 4647.95 Curve(DDS) -49.181	Crawl ' (/sf)	R-0 'R-11 flr -28.23 .96 R-19 flr -33.10 -2.20 R-30 flr -36.19 -4.21 R-38 flr -36.89 -4.67 R-49 flr -38.92 -5.99 Intercept -9.016 Slope(DD) 6212.77 Curve(DDS) -135.112	Window U-value (/sf) 1-Pane .00 153.47 2-Pane -14.65 74.19 3-Pane -19.63 47.26 R-10 -25.48 15.59	Slope(DD) 6706.98 Curve(DDS) -33.858 171.44 MBtu 57.40 MBtu 5.55 MBtu
Pittsburgh PA WYEC	I	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 34.52 R-7 -31.83 13.85 R-11 -36.91 10.55 R-19 -41.47 7.59 R-22 -43.25 6.43 R-30 -45.64 4.88 R-38 -47.08 3.94 R-49 -48.37 3.10 R-60 -49.21 2.56	Slope(DD) 71Ø6.66 Curve(DDS) -216.717 Slab (/ft)	R-0 -20.25 56.96 R-5 2ft -25.68 24.25 R-6 4ft -27.28 14.61 R-10 2ft -26.68 18.22 R-10 4ft -28.92 4.73 Intercept -23.426 Slope(DD) 8774.71 Curve(DDS) -148.899	nheated Basement (/sf	R-0 R-11 fir -27.51 1.43 R-19 fir -21.88 -1.41 R-30 fir -34.69 -3.24 Intercept -8.146 Slope(DD) 6674.42 Curve(DDS) -552.094	Infiltration (/sf flr) ELF Ach .0007(.78) .00 18.98 .0005(.58) -8.50 13.46 .0003(.35)-16.88 8.02	Slope/.001ELF 26.428 Curve/.001ELF .974 Base Load = Typical Load = Residual Load =

	Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 13.03 R-7 -2.06 6.54 R-11 -2.35 6.62 R-13 -2.73 4.41 R-19 -2.92 3.82 R-27 -3.26 2.77 R-34 -3.46 2.13	Slope(DD) 2783.15 Curve(DDS) -67.079 Heated Basement (/ft)	0	Craw! (/sf)	R-0 R-11 flr -1.24 5.61 R-19 flr -1.25 4.93 R-30 flr -1.96 4.42 R-38 flr -2.02 4.31 R-49 flr -2.22 3.98 Intercept 3.142 Slope(DD) 1772.09 Curve(DDS) -172.836	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope(DD) 1320.79 Curve(DDS) -8.073 50.59 MBtu 31.80 MBtu 9.81 MBtu
ing Series Two	0	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-0 R-7 R-11 R-11 R-12 R-13 R-22 R-26 R-36 R-36 R-36 R-36 R-36 R-36 R-36 R-3	Slope(DD) 4392.25 Curve(DDS) -104.590 Slab (/ft)	R-0 R-5 2ft -4.39 7.52 R-5 4ft -4.41 6.69 R-10 2ft -4.43 6.19 R-10 4ft -4.46 5.02 Intercept .000 Slope(DD) 2107.37 Curve(DDS) -120.365	Unheated Basement (/sf)	R-0 R-11 flr -2.27 3.91 R-19 flr -2.37 3.74 R-30 flr -2.44 3.63 Intercept 3.260 Slope(DD) 533.04 Curve(DDS) -85.576	Infiltration (/sf flr) ELF Ach .0007(.51) .00 3.96 .0005(.37) -1.47 2.74 .0003(.22) -2.85 1.59	Slope/.001ELF 5.042 Curve/.001ELF .886 Base Load = Typical Load = Residual Load =
MApartment Prototype Sid	eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 .00 6.04 R-7 -1.21 2.23 R-11 -1.38 1.68 R-13 -1.53 1.21 R-19 -1.69 .97 R-27 -1.69 .69 R-34 -1.75 .52	Slope(DD) 561.96 Curve(DDS) 104.252 Heated Basement (/ft)	R-0 R-5 4ft -2.57 7.95 R-5 8ft -2.60 6.95 R-10 4ft -2.61 6.78 R-10 8ft -2.65 5.28 Intercept 3.690 Slope(DD) 76.13 Curve(DDS) 9.920	L	R-0 'R-11 flr -2.06 1.25 R-19 flr -2.30 .88 R-38 flr -2.40 .67 R-38 flr -2.50 .51 Intercept .256 Slope(DD) 459.53 Curve(DDS) 78.671	WindowwU-value (/sf) 1-Pane .00 17.80 2-Pane -1.70 6.03 3-Pane -2.03 3.70 R-10 -2.43 .96	Slope(DD) 383.24 Curve(DDS) 11.027 14.53 MBtu 4.31 MBtu 2.18 MBtu
Phoenix AZ WYEC	Ξ	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 9.97 R-1 -4.52 2.43 R-12 -5.08 1.56 R-22 -5.23 1.56 R-30 -5.42 .93 R-49 -5.63 .58 R-60 -5.69 .48	Slope(DD) 1279.69 Curve(DDS) 67.698 Slab (/ft)	2ft -2.67 4ft -2.80 2 ft -2.80 8 4ft -2.80 Intercept -2.81 Slope(DD) -3 Curve(DDS) 11	nheated Basement (/sf	R-0 R-11 flr -2.58 .39 R-19 flr -2.65 .27 R-3Ø flr -2.7Ø .19 Intercept0Ø7 Slope(DD) 259.41 Curve(DDS) -12.7Ø2	Infiltration (/sf flr) ELF Ach .0007(.57) .00 1.47 .0005(.41)98 .66	Slope/.001ELF667 Curve/.001ELF 3.959 Base Load = Typical Load = Residual Load =

		Component (KBtu)	1.8 1.8	. o. 4.	3.30 2.4 2.4	284.17	2 +		(/sf)	22.1.1 2.1.8 2.1.8 2.1.8 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	4.00	(/sf -3.5 -2.81 -1.82	330.80 7.488	
	þe	Delta Co (MBtu)	9.6	1 1	9 45 7 48 4 50	(00) (00)	D 0			88. 84. 62. 86.	cept (00) (00s)		- (sgg) - (gg)	8tu Btu Btu
	ooling Lo	•	Wa - R - 0		R-19 R-27 R-34	Slop	Heated B	4848 c-1	Crawl	R-0 R-11 flr R-19 flr R-30 flr R-38 flr	-49 flr Inte Slop Curv	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope	8.28 MB 4.88 MB 2.08 MB
	ပိ	omponent (KBtu)	244			999	(/ft	. 69 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	; (/sf)	.04 .88 1.19 1.38	1.93Ø 755.75 75.521	(/sf flr) 19 28 23	-1.146 1.250	Load = Load =
es Two		Delta Co (MBtu)	ing -1.4	2.4	-2.03 -2.17 -2.25	-2.33 -2.33 (DD)		95 89 88 84 84 60b)	Basement	66 16 .02	Intercept Slope(DD) - Curve(DDS)	8 8 8 5 6 8	.001ELF .001ELF	Base Typica Residua
Seri			9-7-	770	* & & & a	40 0 -	Slab	R-6 R-5 2ft R-10 2ft R-10 4ft Inte S-00 Cury	Unheated	R-11 flr R-19 flr R-30 flr	Inte Slop Curv	Infiltra ELF Acl .0007(.56 .0005(.36	Slope/.6 Curve/.6	
ype Siding		mponent (KBtu)	(/sf) 32.00 14.92	4.00	் தா	836.51 20.978	(/ft)	149.11 88.95 72.28 76.28 51.45 618.02 -36.553	(/sf)	14 H 1 H 0	23.3	(/sf) 137.32 59.86 37.78 11.80	100.35 7.625	
nt Prototype	Pe	Delta Cor (MBtu)	9.4.	-6.18 -7.06	-8.2	e (DD) 6 e (DDS)	asement	-8.61 -10.42 -10.92 -10.83 -11.54 rcept e(DD)		.000 -10.66 -12.43 -13.53	-14.50 (DD) 5 (DDS) -	.000 -11.15 -14.34 -18.07	(00) (008)	MBtu MBtu MBtu
MApartment	eating Loa		₩ 	8-11 8-13	100	Slop Curv	Heated B	R-6 R-5 R-5 8-16 R-16 Inft Cury	Crawi	R-11 fr R-130 fr R-30 fr	Intervention	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope	77.22 N 22.82 N 1.69 N
WYEC	ř	omponent (KBtu)	35.	. w w	4.6.0	2. 5351. -74.Ø	(/ft)	72. 37. 27. 31. 17. -10.8 8637.	t (/sf	7.46 2.46 54	-3.817 4527.69 454.252	(/sf flr) 17.17 11.82 6.82	21.395 4.48Ø	Load II
rgh PA		Delta ((MBtu)	fing .00	-16.8	6 -18.39 8 -18.92 9 -19.35	3 -19.6 •(DD)	م	-10.91 -11.96 -12.26 -12.15 -12.58 -12.58 (DD) -10.58	E .	-8.61 -11.61 -12.70 -13.41	Intercept Slope(DD) Curve(DDS)	Ach (81) (58) -6.43 (36)-12.42	Ø1ELF Ø1ELF	Base Typical Residual
Pittsburgh			C R R R C C C C C C C C C C C C C C C C	7 7 7	ω n 4	9 0 5	Slat	55 2f 56 4f 10 2f 10 4f Int Slo	nheate	R-6 R-11 fr R-19 fr R-3Ø fr	Inte Slop Curv		Slope/.Ø. Curve/.Ø	

	coling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 2.19 R-752 1.11 R-1159 .95 R-1376 .73 R-1975 .62 R-2782 .46 R-3487 .36	Slope(DD) 464.39 Curve(DDS) -10.590 Heated Basement (/ft)	79 1. 84 85 85 85 00) -9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	Crawl (/sf)	R-0 .00 1.42 R-11 flr .37 2.04 R-19 flr .44 2.15 R-30 flr .56 2.36 R-38 flr .59 2.40 R-49 flr .67 2.54 Intercept .2.54 Slope(DD) .499.35 Curve(DDS) 48.468	Window U-value (/sf. 1-9) 2-Pane .00 -1.2 3-Pane .158 R-10 .2331	Slope(DD) -138.93 Curve(DDS) 2.522 9.53 MBtu 5.70 MBtu 2.05 MBtu
ing Series Two	ŭ	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-6 R-7 -1.53 1.77 R-11 -1.78 1.36 R-19 -2.09 .99 R-20 -2.09 .85 R-38 -2.20 .66 R-38 -2.27 .54 R-49 -2.40 .32	00 00 042 00 00 00 00 00 00 00 00 00 00 00 00 00	R-0 R-5 2ft -1.24 -9.72 R-5 4ft -1.24 -9.72 R-10 2ft -1.23 -9.47 R-10 4ft -1.17 -7.97 Intercept -4.722 Slope(DD) -1102.62 Curve(DDS) 44.735	Unheated Basement (/sf)	R-6 R-11 flr18 1.12 R-19 flr .00 1.42 R-30 flr .12 1.62 Intercept 2.151 Slope(DD) -727.25 Curve(DDS) 63.887	Infiltration (/sf flr) ELF Ach .0007(.50) .00 .14 .0005(.38)06 .09 .0003(.22)11 .05	Slope/.001ELF .125 Curve/.001ELF .104 Base Load = Typical Load = Residual Load =
Mid Town Prototype Sid	eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-1 R-11 R-13 R-13 R-13 R-19 R-19 R-19 R-19 R-27 R-27 R-27 R-34 R-3	Slope(DD) 6050.60 Curve(DDS) -21.560 Heated Basement (/ft)	R-0 R-5 4ft -9.13 77.84 R-5 8ft -9.71 63.34 R-10 4ft -9.60 66.09 R-10 8ft -10.43 45.34 Intercept .000 Slope(DD) 4602.86 Curve(DDS) -35.206	Crawl (/sf)	R-0 .00 20.41 R-11 flr -10.44 3.01 R-19 flr -12.19 .09 R-38 flr -13.27 -1.72 R-49 flr -14.23 -3.32 Intercept -6.054 Slope(DD) 5566.98 Curve(DDS) -79.355	Window U-value (/sf) 1-Pane .00 138.62 2-Pane -11.06 61.82 3-Pane -14.33 39.09 R-10 -18.18 12.37	Slope(DD) 5261.05 Curve(DDS)387 82.20 MBtu 25.06 MBtu 1.52 MBtu
Pittsburgh PA WYEC	Ť	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø .00 36.01 R-7 -13.22 13.98 R-11 -15.32 10.46 R-19 -17.22 7.31 R-22 -17.20 7.31 R-30 -18.81 4.65 R-38 -19.36 3.74 R-49 -19.83 2.96 R-60 -20.13 2.46	Slope(DD) 6726.25 Curve(DDS) -110.195 Slab (/ft)	R-0 -9.96 57.09 R-5 2ft -11.29 23.84 R-5 4ft -11.66 14.59 R-10 2ft -11.52 18.09 R-10 4ft -12.01 5.84 Intercept -18.541 Slope(DD) 7347.53 Curve(DDS) -59.963	nheated Basement (/sf	R-Ø -7.13 8.52 R-11 flr -10.87 2.29 R-19 flr -12.11 .22 R-3Ø flr -12.91 -1.11 Intercept -4.792 Slope(DD) 5Ø56.Ø4 Curve(DDS) -479.643	Infiltration (/sf flr) ELF Ach .0007(.81) .00 17.31 .0005(.58) -6.46 11.93 .0003(.36)-12.50 6.89	Slope/.001ELF 21.666 Curve/.001ELF 4.376 Base Load = Typical Load = Residual Load =

	ng Load	Delta Component (MBtu) (KBtu)		-0 .00 1.1	-727 .5	-13	-1939 .3	R-2743 .23	-3445		Slope(DD) 226.35 Curve(DDS) -3.244)t (/f+		6 79	4ft70 -1.7	8 4 ft = .78 = 1.7	8 8ft - 68 -1.2	Intercept Slope(DD) -1	w (/st		1.60 1.6 1.7 .43 1.7	0 fir .47 1.83	2. 1 to 1 1 1 to 2 1 1 to 3 1	Intercept 2.07	DD) -186.3	w U-value (/sf		-Pane .14 -1.1	ane .20	-113.3	.65 MBtu .32 MBtu 81 MBtu	10.
g Series Two	Cooling	Delta Component (MBtu) (KBtu))	-7 - 08 - 7-	-11 -1.04	-19 -1.17	-22 -1.23	-36 -1.36 -38 -1.35	R-49 -1.39 .26	-60 -1.42	Slope(DD) 604.26 Curve(DDS) -28.442	Slab (/ft) Hea		tt92 -7.24 R	-5 4ft81 -4.4	-10 2ft83 -4.99 R	-10 4ft77 -3.49 R	187 .82 527	ment (/	C 10 -	2 - N	-30 flr .19 1.37 R-3 R-3	4-8	ntercept 1.863	Slope(UU) -675.87 Curve(DDS) 58.447	(/sf flr) Win	Ach (.47) .00 = 06	4)0308	(.20)0208	Slope/.001ELF375 Curve/.001ELF .417	Base Load = 5 Typical Load = 3 Residual Load = 3	3
Mid Town Prototype Siding	ating Load	Delta Component (MBtu) (KBtu)	- 6	-7 -9.62 18.	-11 -10.99 15.	-13 -12.60 12.	-13 -13.40 10. -27 -14 81 7	-34 -15.67 5.			Slope(DD) 7439.82 Curve(DDS) -47.623	Heated Basement (/ft)		-/./4 152./ ft -10.06 94.7	-5 8ft -10.76 77.2	-10 4ft -10.62 80.7	Totono - 11.03 55.4	ercept pe(DD) 5426 ve(DDS) -41.	Crawi (/sf)	-0 .60 23.0	-11 fir -12.43 2.3	20 -3 20 -3	-49 fir -17.08 -5.3	rcept -8.76	urve(DDS) -135.36	Window U-value (/sf)	-Pane .00 171.4	-13.57 77.2	-10	Slope(DD) 6623.85 Curve(DDS) ~4.899	99.28 MBtu 31.20 MBtu 2.86 MBtu	
Portland ME WYEC		Delta Component (MBtu) (KBtu)	ø 74,7	-7 -16.00 17.0	-11 -18.56 12.7	-13 -20.65 6.9 -22 -21.68 7 F	-30 -22.78 5.7	-38 -23.45 4.5	-49 -24.03 3.6 -60 -24.41 9.9		Slope(DD) 8236.49 Curve(DDS) -146.711	Slab (/ft)	-0 -11.12 68.2	ft -12.77 26.9	-5 4ft -13.23 15.4	-10 21c -13.06 19.7 -10 4ft -13 70 3 7	Intercept -28.39	(00) 9286 (00S) -1Ø1.	Unheated Basement (/sf)	-0 -7.74 10.1	R-11 flr -12.56 2.15 R-19 flr -14.1957	-30 flr -15.24 -2.3	topopt - 7 16	Slope(DD) 6667.52	urve(DDS) -640.45	Infiltration (/sf flr) ELF Ach	(.76) .00 20.6	(.34) - 14.77		Slope/.001ELF 26.291 Curve/.001ELF 4.479	Base Load = Typical Load = Residual Load =	

					•				
		omponent (KBtu)	(/sf) 1.16 1.62 .52 .48 .34	260.40 -8.417 (/ft)	1.26 .38 .086 .086 .088 .981	(/sf)	1.14 1.56 1.62 1.72 1.77 1.839 187.09	(/sf) .20 .14 .09	16.09 325
	Cooling Load	Delta Co (MBtu)	Wall R-0 R-7 R-1162 R-1385 R-1992 R-27 -1.01 R-34 -1.07	Slope(DD) Curve(DDS) Heated Basement	R-0 -1.55 R-5 4ft -1.71 R-5 8ft -1.72 R-10 4ft -1.76 R-10 8ft -1.75 Intercept Slope(DD) Curve(DDS)	Crawl	R-0 R-11 flr .65 R-19 flr .74 R-30 flr .86 R-38 flr .89 R-49 flr .97 Intercept .97 Slope(DD) .	Window U-value 1-Pane .00 2-Pane01 3-Pane02 R-1003	Slope(DD) Curve(DDS) 7.61 MBtu 1.57 MBtu -1.78 MBtu
	Ü	Component (KBtu)	(/sf) 2.45 5 .999 11 .76 3 .55 2 .36 2 .38 8 .23	521.58 -18.164 (/ft)	2 -1.67 2 -1.67 3 -1.03 9 -1.39 8 -72 -462.33 16.075	it (/sf)	. 14 . 98 . 1.23 1.39 1.824 -593.01	(/sf flr) .24 .19	se Load = Load = Load = =
es Two		Deita Co (MBtu)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ope(DD) rve(DDS) ab	t -2.8 t -1.9 t -1.9 t -1.9 t -1.9 ve(DD)	d Basemen	fir -1.55 fir -38 fir .38 Intercept Slope(DD)	tration Ach .00 .47) .00 .34)08	001ELF 001ELF Typic Residu
ng Seri			0	SION SIN	R-6 R-5 R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1	Unheated	R-0 R-11 R-19 R-30 Int	Infilt ELF A. .0007(.0005(.:	Slope/. Curve/.
ype Siding		Component (KBtu)	(/sf) 39.43 19.46 16.61 13.11 11.38 8.19 6.24	8171.02 156.213 (/ft)	123.14 84.04 69.52 73.56 50.91 .000 5147.78	(/sf)	21.19 88 -4.71 -7.16 -7.72 -9.34 13.623 589.69	(/sf) 189.13 91.46 58.26 19.22	269.54 41.873
/ Prototype	pe	Delta Co (MBtu)		e(DD) e(DDS) - asement	-12.19 -18.68 -21.09 -20.42 -24.18 (OD) (DD)		.000 -33.99 -39.88 -43.66 -44.62 -47.01 rcept -7.00 e(DD) 7	U-value ine .000 ine -18.05 ine -24.18	e(DD) 8 e(DDS) - MBtu MBtu MBtu
One Story	Heating Los		X X X X X X X X X X X X X X X X X X X	Slop Curv Heated B	R-6 R-5 R-5 R-16 R-10 4ft R-10 8ft Intervence Curve	Crawi	R-6 R-11 R-13 f-r R-38 f-r R-38 f-r Inter Slope Curve	Window U 1-Pan 2-Pan 3-Pan R-10	Slope Curve 207.17 71.97 10.68
WYEC	H	omponent (KBtu)	(/sf) 11.73 12.75 12.75 12.75 7.77 7.77 8.77 3.75	8581.06 260.244 (/ft)	64.82 24.76 12.71 17.17 -35.291 0502.82		13.27 24 -3.36 -5.67 -11.875 8429.10 687.412	(/sf flr) 22.45 15.94 9.51	31.396 . 974 . Load =
ME		Delta Co (MBtu)	ing 	e(DD) e(DDS) -	-21.87 -28.52 -30.52 -29.78 -32.59 rcept e(DD)	Basement	-12.15 -32.26 -37.86 -41.36 -41.36 (DD)	tion .000 -10.03	.001ELF .001ELF Base Typica Residua
Portland			C C C C C C C C C C C C C C C C C C C	Slop Slab	R-6 R-5 2ft R-10 2ft R-10 2ft Inte	Unheated	R-0 R-11 f- R-19 f- R-30 f- Inte	Infiltra ELF Ach .0007(.75) .0005(.54) .0003(.33)	Slope/.e

		elta Component (MBtu) (KBtu)		ۍ پ			.30	.40	. 57	?	(DD) 433.76 (DDS) -17.818	ement (/ft		.41 -12.1	46 -12.4	52 -12.8	4	1.63	2	. 60 40 . 56 03 . 58 02 . 60 01	•	 	(DD) 3.53 (DDS) -15.845		> !	. 60 25 61 36 . 61 26 63 26	-38	
	Cooling Load	å		— e ×	8-7 7-8	7	7	∵ (R-2/	•	Slope	Heated Bas			-5 8ft	-10 4ft	Inter Slope) -		R-11 flr R-19 flr R-30 flr	-38 4-	-48 TIF Inter	0 0	Window U-	,	2-Pane 3-Pane R-10	50	6.3 6.39 8.39 8.39 8.39 8.30
_ v.		(MBtu) (KBtu)		787) 1880 3.3	2.97 1.4	3.44 1.1	8. 78.5	7. 00.4	4.47	-4.62 .34	791.9	(/ft)	· >	.14 -16.5 .96 -15.5	.89 -15.0	.93 -15.3 80 -14 F		nent (/sf		4267 1852 0342		15) -347.51 S) 23.855	n (/sf flr)	5	12 .02 1801	ELF195 ELF .487	Base Load = ypical Load = sidual Load =
ding Series]		- 0 0		9	R-7	7,	٦°	7 6	'n	R-49 R-60	Slope (D	Slab		دد	-5 4ft	-10 27t -10 4ft	Sio	70	8	R-11 flr R-19 flr R-30 flr		Intercep	Slope(DD) Curve(DDS)	ltratio	⋖ͺ	.0003(.28)	Slope/.001E Curve/.001E	R
rototype Si		Component	4	24	43 12.1	ო ნ	90	43 5.0	75 3.8		4974.69 -61.254	t (/ft)		Ø6 172.6 84 149.8	63 139.0 88 143 6	59 127.2	92.364 3513.81 -38.182	(/sf)	00 15) 00 00 4 00	2.0	.00	. B	(/sf)	0 106.1	ro 4 o	3959.09 2.313	
One Story Pro	Heating Load	Deita (MBti	Wall	R-0	-7 -14	-11 -16	-19 -20	-27 -22	-34 -2		Slope(DD) Curve(DDS)	Heated Basemen		ft6.	-5 8ft -11. -10 4ft -10	-10 8ft -13.	Intercept Slope(DD) Curve(DDS)	Crawl	89	R-11 flr -22.8 R-19 flr -26.6 R-30 flr -29.6 R-38 flr -29.5	-49 fir -31	tercept	9 0 0 2 2	Window U-value	-Pane	2-Pane -10.9 3-Pane -14.1 R-10 -17.8	Slope(DD) Curve(DDS)	130.27 MBtu 51.61 MBtu -2.47 MBtu
WYEC		elta Component (MBtu) (KBtu)	_	.00 27	0.4/ 16	3.19	4.61 5	6.50 3	7.65	39.27 2.03) 5574.50)S) -157.161	(/ft)	40 146 4	16 117.8	.97 112.9	.13 99.9	74. 7444 -128.	sement (/ṣf)	6.06 18.6	6.34 4.24 6.75		5999	-478.03	on (/sf flr)	.00 12.2	6.12 8.29 1.66 4.69	LF 14.220 LF 4.708	Base Load :: ypical Load :: sidual Load ::
Portland OR		Ded W)	·		- [-19	-22 -	-30	88	1 009	Slope(DD) Curve(DDS)	Slab	20	ب د د	-10 2ft	-10 4ft	intercept Slope(DD) Curve(DDS)	Unheated Bas	-0	R-11 flr -2 R-19 flr -2 R-3Ø flr -2		Intercept Slope(DD)) D	ه د	(89.) (90	005 (. 50) - 003 (. 30) -1	Slope/.001EL Curve/.001EL	T _y .

	ng Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 1.16 R-715 .69 R-1117 .62 R-1323 .44 R-1925 .35 R-2727 .30	Slope(DD) 316.15 Curve(DDS) -18.667 ated Basement (/ft)	4ft58 -1. 8ft59 -1. 8 4ft59 -1. 8 8ft49 -1. Intercept6 Slope(DD) -100. Curve(DDS) 2.1	wl (/sf)	1 fir .33 1.33 9 fir .33 1.33 8 fir .46 1.53 8 fir .46 1.55 1 fir .49 1.59 9 fir .49 1.59 Intercept 1.730 Slope(DD) -261.50 Curve(DDS) 14.551	1-Pane .00 -2.34 2-Pane .11 -1.61 3-Pane .19 -1.05 R-10 .2840	Slope(DD) -175.75 Curve(DDS) 3.300 4.71 MBtu 2.71 MBtu 1.19 MBtu
Series Two	Cooling	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 2.53 R-788 1.06 R-11 -1.02 .82 R-19 -1.15 .61 R-20 -1.21 .52 R-38 -1.28 .39 R-49 -1.37 .25 R-60 -1.39 .21	Slope(DD) 582.61 Curve(DDS) -26.28Ø Slab (/ft) Hea	R-0 R-5 R-5 R-5 R-5 R-10 R-10 R-10 R-10 R-10 R-10 R-10 R-10	Unheated Basement (/sf) Cra	R-0 R-11 flr07 .66 R-1: R-19 flr .06 .87 R-15 R-30 flr .13 1.00 R-36 Intercept 1.351 Slope(DD) -482.57 Curve(DDS) 41.668	Infiltration (/sfflr) Win ELF Ach .0007(.47) .00 .00 .0005(.34)0201 .0003(.20)0302	Slope/.001ELF104 Curve/.001ELF .156 Base Load = Typical Load = Residual Load =
MApartment Prototype Siding	ating Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 38.86 R-7 -6.54 18.23 R-11 -7.47 15.30 R-13 -9.53 11.94 R-27 -9.98 7.38 R-34 -10.55 5.60	Slope(DD) 7197.82 Curve(DDS) 5.056 Heated Basement (/ft)	R-Ø -9.53 178.18 R-5 4ft -11.65 107.34 R-5 8ft -12.27 86.84 R-1Ø 4ft -12.15 90.84 R-1Ø 8ft -13.01 62.18 Intercept .000 Slope(DD) 6007.42 Curve(DDS) -40.720	Crawl (/sf)	R-0 R-11 flr -12.73 3.57 R-19 flr -14.8802 R-30 flr -16.27 -2.34 R-38 flr -16.59 -2.87 R-49 flr -17.50 -4.39 Intercept -7.816 Slope(DD) 7071.35 Curve(DDS) -139.250	Window U-value (/sf) 1-Pane .00 170.02 2-Pane -13.75 74.50 3-Pane -17.71 47.04 R-10 -22.36 14.74	Slope(DD) 6250.25 Curve(DDS) 7.191 93.42 MBtu 28.52 MBtu 3.00 MBtu
Portland ME WYEC	He	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0	Siope(DD) 7811.62 Curve(DDS) -109.681 Siab (/ft)	R-0 -12.29 86.01 R-5 2ft -13.60 42.51 R-5 4ft -13.99 29.51 R-10 2ft -13.84 34.51 R-10 4ft -14.37 16.68 Intercept -20.126 Slope(DD) 10770.26 Curve(DDS) -159.019	Unheated Basement (/sf)	R-0 -9.53 8.91 R-11 flr -13.45 2.38 R-19 flr -14.86 .02 R-30 flr -15.77 -1.49 Intercept -5.726 Slope(DD) 5840.46 Curve(DDS) -582.407	Infiltration (/sf flr) ELF Ach .0007(.76) .00 20.61 .0005(.56) -7.57 14.30 .0003(.34)-14.73 8.33	Slope/.001ELF 26.520 Curve/.001ELF 4.167 Base Load = Typical Load = Residual Load =

	מ נ	Wall (/sf) R-0 .00 1.82 R-795 .97 R-11 -1.09 .85 R-13 -1.30 .66 R-19 -1.40 .57 R-27 -1.57 .42 R-34 -1.67 .33	Slope(DD) 433.76 Curve(DDS) -17.818 Heated Basement (/ft)		400000000	Window U-value (/sf) 1-Pane .0025 2-Pane .0130 3-Pane .0120 R-10 .0308	Slope(DD) -38.68 Curve(DDS) 1.11Ø 9.91 MBtu 5.39 MBtu .21 MBtu
ing Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 3.34 R-7 -2.97 1.41 R-11 -3.44 1.10 R-22 -4.06 .70 R-38 -4.32 .54 R-38 -4.47 .44 R-49 -4.62 .34 R-60 -4.71 .28	Slope(DD) 791.95 Curve(DDS) -38.553 Slab (/ft)	R-8	R-0 -1.41 -1.31 R-11 fir4267 R-19 fir1852 R-30 fir0342 Intercept159 Slope(DD) -347.51 Curve(DDS) 23.855	Infiltration (/sf flr) ELF Ach .0007(.60) .00 .10 .0005(.43)12 .02 .0003(.26)1801	Slope/.001ELF195 Curve/.001ELF .487 Base Load = Typical Load = Residual Load =
One Story Prototype Sid Heating Load		Wali R-Ø R-7 -14.43 12.14 R-11 -16.49 10.31 R-13 -19.03 8.05 R-27 -22.29 6.93 R-34 -23.75 3.85	Siope(DD) 4974.69 Curve(DDS) -61.254 Heated Basement (/ft)	R-Ø -6.06 172.63 R-5 4ft -9.84 149.86 R-5 8ft -11.63 139.08 R-10 4ft -10.88 143.60 R-10 8ft -13.59 127.27 Intercept 92.364 Slope(DD) 3513.81 Curve(DDS) -38.182	R-0 R-11 flr -22.86 7.70 R-19 flr -26.69 5.21 R-30 flr -29.04 3.68 R-38 flr -29.58 3.34 R-49 flr -31.13 2.33 Intercept .000 Slope(DD) 4723.67 Curve(DDS) -63.833	Window U-value (/sf) 1-Pane .00 106.13 2-Pane -10.95 46.88 3-Pane -14.14 29.62 R-10 -17.89 9.32	Slope(DD) 3959.09 Curve(DDS) 2.313 130.27 MBtu 51.61 MBtu -2.47 MBtu
Portland OR WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0	Slope(DD) 5574.50 Curve(DDS) -157.161 Slab (/ft)	R-0 R-5 2ft -15.16 117.82 R-5 4ft -16.77 108.12 R-10 2ft -15.97 112.94 R-10 4ft -18.13 99.92 Intercept 74.229 Slope(DD) 7444.40 Curve(DDS) -128.954	R-0 -6.06 18.61 R-11 fir -20.34 9.34 R-19 fir -24.24 6.80 R-30 fir -26.75 5.17 Intercept 5922.28 Curve(DDS) -478.039	Infiltration (/sf flr) ELF Ach .0007(.68) .00 12.26 .0005(.50) -6.12 8.29 .0003(.30)-11.66 4.69	Slope/.001ELF 14.220 Curve/.001ELF 4.708 Base Load = Typical Load = Residual Load =

		Component (KBtu)	(/sf) 1.83 1.03 .91 .70 .60 .50	472.58 -24.443 (/ft)	-17.60 -17.85 -17.35 -17.35 -16.271 -112.97	(/sf)	37 01 .01 .01 .01 .01 .000 30.11	(/sf) -1.40 91 60	-97.65 1.689
	פַּ	Delta Co (MBtu)	00	e(DD) e(DDS) asement	48 49 49 49 47 47 47 47 47 47 48		.000 .22 .23 .23 .23 .23 .23 .000 (00)	. 88 . 87 . 12	e(DD) e(DDS) MBtu MBtu MBtu
	Cooling Load		W R R R R - 0 - 111 R R - 131 R R - 131 R R - 131 R R - 232 R - 342 R R - 34	Slop Curv Heated B	R-0 R-5 84t R-10 4ft R-10 8ft S-10 8ft Curve	Crawl	R-11 fr R-13 fr R-30 fr R-30 fr R-49 fr R-49 fr R-49 fr R-40 fr Slope	Window U. 1-Pane 2-Pane 3-Pane R-10	Slope Curve 6.67 M 4.86 M 2.09 M
	Coo	omponent (KBtu)	(/sf) 3.33 1.36 1.04 1.04 1.04 1.33 1.39 1.31	715.13 25.998 (/ft)	-25.60 -24.10 -23.60 -23.85 -22.85 20.766 655.04	(/sf)	-1.17 36 27 041 7.038	sf flr) 00 04 05	.417 .417 Load = Load = Load =
o *		elta ((MBtu)	-1.18 -1.37 -1.54 -1.54 -1.76 -1.76 -1.76	(00) (00)	80 73 73 73 69 69 (DD)	Basement	48 08 .01 .03 .06 .00 .00 .00 .00 .00 .00 .00 .00 .00	tion (/ 00 05 05	IELF Base Typical Residual
Series		۵	C. B. C.	Slope Curve Slab	-6 -5 -15 2ft -10 2ft None Curve	inheated 6	-0 -11 flr -19 flr -30 flr Inter Slope Curve	Infiltrat ELF Ach 0007(.60) 0005(.43) 0003(.26)	Slope/.001 Curve/.001
guib					~ ~ ~ ~ ~ ~	5	œ œ œ œ		
S		omponent (KBtu)	(/sf) 24.59 11.34 9.46 7.30 6.23 4.50 3.44	4351.71 40.950 (/ft)	201.47 166.47 153.72 158.22 140.72 104.690 3491.21	(/sf)	20.68 6.81 4.55 3.23 3.23 2.93 2.06 4099.59	(/sf) 93.36 35.99 22.43 6.48	32.476
Prototype	_	elta ((MBtu)	.00 -6.31 -7.21 -8.24 -8.75 -9.57 -10.08	(DD) (DDS) sement	-4.35 -5.75 -6.26 -6.08 -6.78 (00) (DDS)		.000 -8.32 -9.68 -10.47 -10.65 -11.17 copt (DD)	. 00 -8.26 -10.21 -12.51	(00) 2 (00s) 8 Btu Btu
d Town	ing Load	۵	Wall R-7 R-11 R-11 R-13 R-27 R-27	Slope Curve eated Bas	-6 -5 4ft -16 8ft -16 8ft Slope Curve	- × a r	111 f 1 119 f 1 130 f 1 149 f 1 149 f 1 10 f 1 10 f 1 10 f 1	indow U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 60.51 M 28.58 M 1.49 M
. <u>.</u>	Heat	ţ.	.f.) 778 222 68 68 68 88 88 91	59 C	27-7-28-1 RRRRR	o ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-r.) W.	04 DDD
WYEC		ompone (KBt	(/sf 28.2 33.8 8.2 8.2 6.6 6.6 6.6 9.9 4.7 1.3 6.6 2.2 2.2 2.2 2.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	5190.6 -56.82 (/ft	4 159.2 9 130.4 5 121.4 7 125.9 4 114.2 92.15 6212.0 63.23	nt (/sf	5 13.4 6 7.5 9 5.6 2 4.4 4.8 1.14 4582.7	11.0 11.0 7.1 3.8	16.756 7.085 19.086 cal Load
OR		elta C (MBtu)	-10.6 -10.6 -12.3 -13.8 -14.3 -15.1 -15.5	(\$00) (00)	-6.0 -7.1 -7.5 -7.3 -7.8 -7.8 (00)	Ваѕешег	-4.3 -7.8 -8.9 -9.7 -9.7 (00)	tion (-4.62) -8.56	T E S
Portland		۵	0	Slope Curve Slab	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Interce Slope(I	Unheated	R-0 R-11 flr R-19 flr R-30 flr Interco Slope((Infiltrat ELF Ach .0007(.70) .0005(.51) .0003(.32)	Slope/.0011 Curve/.0014

	ooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 1.82 R-725 1.03 R-1129 .92 R-1335 .72 R-1938 .62 R-2743 .47 R-3446 .37	Slope(DD) 488.64 Curve(DDS) -27.866 Heated Basement (/ft)	-6 4ft40 -185 8ft41 -1810 4ft42 -1810 8ft42 -18. Intercept7.77 Slope(DD) -59. Curve(DDS) 1.23	R-0	()	Slope(DD) -105.42 Curve(DDS) 2.763 5.50 MBtu 3.80 MBtu 1.05 MBtu
ing Series Two	J	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 3.27 R-7 -1.16 1.33 R-11 -1.35 1.02 R-12 -1.51 .75 R-22 -1.58 .63 R-38 -1.73 .39 R-49 -1.78 .31 R-60 -1.81 .25	Slope(DD) 702.21 Curve(DDS) -25.403 Slab (/ft)		I fir16 88 87 88 88 83 83 83 83 83 Slope(DD) -289.2 Curve(DDS) 24.89	Infiltration (/sf flr) ELF Ach .0007(.60) .00 .04 .0005(.43)04 .00 .0003(.26)0601	Slope/.001ELF125 Curve/.001ELF .260 Base Load = Typical Load = Residual Load =
MApartment Prototype Sid	Heating Load	Delta Component (MBtu) (KBtu)	Wall R-0 .00 24.51 R-1 -4.26 11.06 R-13 -5.54 7.03 R-19 -5.88 5.98 R-27 -6.40 4.31 R-34 -6.73 3.28	Slope(DD) 4119.19 Curve(DDS) 81.420 Heated Basement (/ft)	R-0 R-5 4ft -6.93 189.01 R-5 8ft -7.38 174.17 R-10 4ft -7.23 179.01 R-10 8ft -7.85 158.34 Intercept 116.116 Slope(DD) 4073.19 Curve(DDS) -31.104	11 flr -8.51 6.8 19 flr -9.87 4.51 8 flr -10.67 3.23 8 flr -11.38 2.09 Intercept .000 Slope(DD) 4077.34 Curve(DDS) 3.83	Window U-value (/sf) 1-Pane .00 91.80 2-Pane -8.28 34.27 3-Pane -10.16 21.28 R-10 -12.35 6.00	Slope(DD) 2461.00 Curve(DDS) 38.495 56.57 MBtu 24.75 MBtu 1.94 MBtu
Portland OR WYEC	¥	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 28.53 R-7 -10.63 10.82 R-11 -12.33 7.99 R-19 -13.85 5.45 R-22 -14.37 4.58 R-30 -15.06 3.42 R-49 -15.81 2.18 R-60 -16.01 1.84	Slope(DD) 4936.64 Curve(DDS) -20.992 Slab (/ft)	R-0 R-5 2ft -7.88 157.51 R-5 4ft -8.19 147.17 R-10 2ft -8.04 152.34 R-10 4ft -8.44 139.01 Intercept 113.042 Slope(DD) 7416.76 Curve(DDS) -106.752	R-0 R-11 fir -8.49 6.85 R-19 fir -9.50 5.18 R-30 fir -10.14 4.11 Intercept 1.118 Slope(DD) 4118.02 Curve(DDS) -403.488	nfiltrati LF Ach 007(.70) 005(.53) 003(.32)	Slope/.001ELF 10.166 Curve/.001ELF 7.449 Base Load = Typical Load = Residual Load =

		Component u) (KBt.)	(המפינו)	٥	.m	e .	6.	, ,		.81		825.98	.05	(/ft)	ω,	ם מ	· -	· ·	. 000 -97.17		(18)	Η,	 	00.0	α	' ;;	<u>ت</u> 0		5	4.1	2.38 1.54	Ġ	238.74 -3.060		
	Cooling Load	Delta (MBt		e	91	-7	-11 -2	2- 51-	-19 -2	R-34 -3.1		Slope (DD)	9	Heated Basement	-2.5	-5 41t -2.5	-10 4ft -2.6	-10 8ft -2.5	Intercept Slope(DD) Curve(DDS)			9.	4. 719 61-	R-30 flr .40	40 417	Intercept	Curve (DDS)	Window U-value)	Pane -	3-Pane 1.49	- 16	Slope(DD) Curve(DDS)	7.6 MB	4.59 MBtu -4.02 MBtu
ing Series Two		Delta Component (MBtu) (KBtu)	•	ering as (/sf	2.8 28.8 2.5	-11 -9.58 9.6	-19 -10.76 1 9	-22 -11.21 1.6	-30 -11.82 1.9	-38 -12.18 1.0	R-49 -12.51 .79 R-60 -12.73 .65	Slope(DD) 1799.17 Curve(DDS) -49 899		-	-3.52 -6.6 ft -3.25 -6.	-5 4ft -3.18 -4.5	-10 2ft -3.20 -4.7	-10 41t -3.08 -3.9 Intercept -2.35	pe(DD) -691 ve(DDS) 24.	Unheated Basement (/sf)	: :	-11 fir -1.10 8	R-19 flr71 1.11	-35 iir -,46 1.2	•	Intercept 1.705 Slope(DD) -587.69	urve(DDS) 46.25	Infiltration (/sf flr)	Ach Ach Aa	(.37)17	(.22) -		Slope/.001ELF .357 Curve/.001ELF .162	Base Load	0 0 ∪ ⊃
One Story Prototype Sid	Heating Load	Delta Component (MBtu) (KBtu))	0	-7 -16.93 14.4	-11 -19.34 12.3	-13 -22.38 9.6	-19 -23.88 8.2	-27 -26.42 6.0	-34 -27.98 4.6		Slope(DD) 5963.95 Curve(DDS) -88.683	Heated Basement (/ft)		6 4ft -14.	-5 8ft -16.42 46 -10 4ft -16 61 41	-10 8ft -18.78 34	Intercept	4Ø31 -39.	Crawl (/sf)	.60 15.	-11 fir -22.26 1.	-19 fir -26.10 -1.6 -30 fir -28.33 -2	84 -2.8	148 TIT 160.31 13.8 Intercept 14 14	pe (DD) 4634	Curve(DDS) -66.37	Window U-value (/sf)	-Pane .00 122.0	-Pane -12.01 57.0	3-Pane -15.86 36.23 R-10 -20.38 11.75	(40)	Slope(UU) 5034.34 Curve(DDS) -15.597	139.75	, 4
Reno NV TMY		Delta Component (MBtu) (KBtu)	eiling (/sf	-0 34.0	-7 -31.47 13.6	-11 -36.50 10.3	-13 -41.01 7.4	-22 -42.70 0.3 -36 -46 11 4 1	-38 -45.11 4./ -38 -46 E2 2 0	R-49 -47.78 3.65	-60 -48.59 2.5	Slope(DD) 6952.34 Curve(DDS) -203.490	Slab (/ft)		ft -22	-3 416 -23.30 6.5 -10 2ft -23.39 6.3	-10 4ft -24.567	cept -17.85	urve(DDS) -66.27	Unheated Basement (/sf)	-0 -8.75 10.1	1.43 1.9	-30 fir -2		ntercept -5.68	Slope(DD) 5314.57	701.75%- (500)	Infiltration (/sf flr) ELF Ach	(.67) .00 12.2	.48	(.29) - 11:31 4:9	1000/ 001E E 15 E1	rve/.001ELF	Base Load	sidual Loa

	Cooling Load	Delta Component (MBtu) (KBtu)	· -	R-G 00 (/St)	-7-	-11 -1.06 2	-13 -1.29 1	-19 -1.41 1	-27 -1.56 1	-34 -1.66		Slope(DD) 1071,49 Curve(DDS) -49 044	ement (/ft		-083 -5.6	-5 4ft80 -4.8	-5 8ft77 -4.1	ft79 -4.6	-10 STt/3 -3.1 Intercept .00	Δ.>	(40/)		-11 fir .24	24	-38 flr .25	-49 flr .26 1	~ ~ ~ ~	Window II-wall		-Pane .00 2.2	2-Pane18 .95 3-Pane23 .60 R-10	1. 63. (00) agolS	rve(DDS)	14.04 MBtu 6.65 MBtu 1.40 MBtu
iding Series Two	0	Delta Component (MBtu) (KBtu)	/) ouilie	6 00.	-7 -3.32 3	-11 -3.84 2	-19 -4.32 2	-22 -4.50 1	-36 -4.75 1	R-49 -5 36 1.12	-60 -5.1	Slope(DD) 1976.33 Curve(DDS) -69.043	Slab (/ft)		-1.35 -18.6	-b 21t -1.25 -16.1	-0 41C -1.23 -15.6	-10 4ft -1.19 -14 6	Intercept -12.21	ope(UU) -1Ø2 rve(DDS) 34	Unheated Basement (/sf)	-68 - 23 - 2	-11 fir34 .4	R-19 flr22 .64 R-30 flr14 .77			Slope(DD) -462.22 Curve(DDS) 33.359	itration (/sf f	Ach Car	(.51) .00	نِن	.001ELF .04	urve/.001	Base Load = Typical Load = Residual Load =
Mid Town Prototype Sid	Heating Load	Delta Component (MBtu) (KBtu)	ali (/sf		-/ -/.12 12.3	-11 -6.13 10.1	7.7 62.81 61-	-27 -10 71 4 7	-34 -11.24 3.6			Slope(DD) 4564.94 Curve(DDS) 93.491	Heated Basement (/ft)		5 4ft. +7 21 46 9	-5 8ft -7.55 38 3	-10 4ft -7.60 37.0	-10 8ft -8.03 26.3	cept (DD) 280	urve(DDS) -8.10	Crawl (/sf)	-0 .00 15.1	-11 flr -7.71 2.2	i w	-38 flr -10.79 -1.1 -49 flr -10.04 -1.0	Intercept -3.77	Slope(DD) 3583.71 Curve(DDS) 20.451	Window U-value (/sf)	-Pane . 88 91 8	-Pane -8.19 34.7	3-Pane -10.08 21.65 R-10 -12.31 6.18	(DD) 2546	29.68	62.26 MBtu 13.99 MBtu 8.81 MBtu
Reno NV TMY	Í	Delta Component (MBtu) (KBtu)	iling (/sf	-6 .60 34.7 -7 -12 01 12 2	-11 -14 97 0 9	-19 -16.82 6.7	-22 -17.46 5.6	-30 -18.31 4.2	-38 -18.82 3.4	-49 -19.23 2	-00 -19.50 2.2	Slope(DD) 6124.71 Curve(DDS) -44.099	Slab (/ft)	8 00 80 81 81	t -9.14 -1.4	-5 4ft -9.30 -5.4	-10 2ft -9.31 -5.6	-16 41t -9.51 -10.6	ercept -21. pe(DD) 3938	urve(DDS) 91.79	Unheated Basement (/sf)	-6 -5.34 6.2	R-19 fir -9.00 .15	-30 flr -9.567		-3.37	Slope(DD) 3530.93 Curve(DDS) -323.054	Infiltration (/sf flr)	(.67) .00 9.1	.0005(.49) -4.19 5.70	(.3Ø) -7.55 2.9	Slope/.001ELF 7.083 Curve/.001ELF 8.646		Base Load = Typical Load = Residual Load =

		omponent (KBtu)	>m (1.7	1.6	œ. κ.		852.55 -26.872	(/ft)	-2.83 -2.16 -1.66 -1.99 -1.33 -000 .000	(/sf)	1.88 1.33 1.33 1.33	1.31 36.4 19.03		60	00
	_	elta ((MBtu)	60.0	29.1	ל	თ თ		(S00) (00)	sement	68 65 65 65 68 64 64 (DD)			i ø	a lue 20. –	32 41	(CCS) Btu Btu
	ng Load		₩ R-6	77	77	R-27 R-34		Slope	ated Ba	6 4ft 5 8ft 10 4ft 10 8ft Inter Slope Curve	- M		9 fir Inter Slope Curve	o ≰ -Pan -Pan	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 3 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Cooling								ž	~~~~~	ؾ	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Λ	<u>:-</u> ≽		
		omponent (KBtu)	(/sf) 9.25	• •			. 7.0 . 7.0	973.92 69.800	(/ft)	-8.16 -5.33 -5.33 -5.49 -2.264 990.48	(/sf)	- 14 48 .67 .89	1.150 479.90 44.463	/sf flr) .28 .18	. 25 80 80 80 80 80	
Two		elta Con (MBtu)	9.6		. 4.	-4.73	ø	(00) 1 (00S) -		78 78 76 74 7	sement	68 31 20			22 ELF ELF	Base ypical sidual
eries T		De.I	eiling -Ø	0	. ~ .	9 m e	n &	0 0 0 0 0 0	a P	2ft 2ft 2ft 4ft ntercept lope(DD) urve(DDS)	d Ba		Intercept Slope(DD) Curve(DDS)	tratio Ach .51) .37)	- [5]	ac
Sei			<u>.</u>	ck d	: oż: c	¥ & (γ.φ.	S	S	R-6 R-6 R-10 R-10 R-10 In 2 Cu	Unheate	R-6 R-11 f R-19 f R-30 f	CEST	Infilt ELF A 0007(.)		
ding														• •	•	
S		mponent (KBtu)	(/sf) 27.07 11.89					234.49 48.374	(/ft)	58.34 48.34 46.51 32.84 .000 618.22	(/sf)	V 66 1 1 4	· 60 · 1~	(/sf) 90.23 32.07	19.8 5.3 7.17	:
rototype		್ದಿ		20.00	φ	- 4		411	i t	79 56 86 91 32		943.5.4	, m			
۵.	ъ	Delta (MBtı	7	r, d				(00) (008)	аѕешеп	-8. -8. -8. -9. (00) (00)		90000	(00) (00) (00)		-12 -12 (00) (00) (00)	Btr. Btr.
MApartment	eol 6		Wall R-0 R-7	R-11 R-13	-10	3.6		Slop	e d	84 84 10 10 10 10 10 10 10	_		Sint	> 4.0°	71 - S	.10 .10 .10 .10
MApa	Heating								Heat	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cra₩	RR-11 R-11 R-11 R-38 8 8 8 8 8	r	¥ing	7 CC	128 8
> -	ř	nent Btu)	/sf) 3.51 2.49	-: -:	∹ α	. 6	. 63	1.16 .255	/ft)	2.34 1.18 1.18 5.84 5.81 5.81 2.83 2.83	/sf)	5.86 2.03 17	. 574 4. 63 . 638	flr)	. 49-	 0 0 0 0 0 0
TMY		Ompon (KB	1 30	w 4	٥.	- co -	r oo	549	3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ut: (0 0 50 11	33.04 -323	(/sf (/sf (%s)	യത	ca – L ca – L ca – L
		Delta C (MBtu)		14. 16.	17.	-18.2		(800) (008)		-9.8 -9.8 -9.9 -9.9 -18.1 (00) (00)	аѕеше	- 10.9 - 10.9	Cept (00) (00S)	6 4. 8 . 2 . 2	-/.» ELF ELF	Typ:
Ž		o O	. <u>-</u>	O	ω r		. 50	0 7 0 0	d e	70 t + + + + + + + + + + + + + + + + + +	ed B	<u> </u>	nterce lope (E urve (D	trati Ach .67)	•	œ
eno l			2,4,4	مخ مخ	άď	د مخا ما	c oc	S	S	-6 -5 -5 -18 -18 1n In S- Cu	heat	-111 f -119 f -30 f	rs 3	Infil ELF ØØØ7 (000	
æ										ထံ ထဲ ထဲ ထဲ ထဲ	5	5 4 4 E		Hmøø	် ကပ်	

		ient itu)	sf) :91	96.	. 29	60.	.64		. 86 88 88	ft)	. [.92	.73	533	0000 .37 267	sf)		91	. 8.1 . 8.1	8 <i>0</i>	82	32 93	Ç	, , ,	. 1. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Ω.	76 12	
		lta Compon MBtu) (KB	@	-2.19 1	2.95	.17	. w		(DD) 816 (DDS) -16.	sement (/	21	74	77	200	cept (DD) 137 (DDS)	٥	5	25 25 25 25 25 25 25 25 25 25 25 25 25 2	, es .	თ 10 0 0	2.5	(DDS) -35.1	lue (/s	98	56 3. 79 2.	3	(00) 325. (00S) -3.1	222
	ooling Load	o O	Wa R-0		٠,	R-19 R-97	l m		Slope (Curve)	Heated Bas	8	. د	-5 8ft	-10 41t	L 03 00	Crawi	- 1	111 11	1 1.	-38 fl -49 fl	Inter	- 0 D	Window U-va	-Pan	2-Pane 3-Pane	}	Slope (D Curve (D	26.60 MBtu 7.39 MBtu -3.26 MBtu
	Ü	omponent (KBtu)	>*	ຕິດ	-	<u></u>	•	• •	1749.57 -55.762	(/ft)	-6.5	9.5	8.4	10.0	-3.95/ -521.72 25.501	t (/sf)	99	1.65	.0		2.541	48.35	(/sf fir)		. 34		. 486 87	Load = Load =
es Two		Delta Co (MBtu)	9	-7.7	-10.6	-10.5	8 -11.44	-12.0	(00) (e(00))		-5.3	-5.26	 	5.1	(00) (00) (000)	Ваѕешел	3.2	-1.68	-1.0) of	(SQ	50	ø.	1 1	i v	001ELF	Bas Typica Residua
ng Seri			Ce:	-1	7	7 5	€ 4	φ	Slop	Slab	9-	R-5 2ft	1.0 2.0	-16	Shope	Unheated	R-0	R-11 flr	-30 fl		Interce	25	Infiltr	ELF Ac	.0005(.37)	,	Curve/.	
ipis e		omponent (KBtu)	(/sf) 30.33	14.8	000	6 8 . 1.	4.7		6119.81 -89.324	(/ft)	100.5	66.7	57.8	4 0.6	3995.1 <i>0</i> -37.699	(/sf)	17		1 1	ï	-7. 463		(/sf)	0.2	66.7 <i>0</i> 42.43 13.88	2 880	-24.559	
Prototype	ס	Delta Co (MBtu)	9	-17.45	-22.9	-24.4	-28.8		pe(DD) ve(DDS)	asement	-10.1		-17.2	-20.1	(SQQ) • (DQS)			-25.27		-34.	cept (DD)	<u>- (şaa)</u>	-value	9.	e -13.59 e -18.08 -23.35	(90)	• (SQQ)	Btu Btu Btu
One Story	ating Loa		₩ - 8-10	1 1	R-13	R-19 R-27	R-34		Slop	Heated B	60	R-5 4ft	-10	-10 8ft	SCUT	Crawl	9		W W	-49 +	Inter	5	Window U	-Pan	2-Pan 3-Pan R-18	2	7 >	149.99 M 46.07 M 6.31 M
WYEC	H Ø	mponent (KBtu)	(/sf) 31.65	9.0	0,0	04	တို့ တဲ့	m	6501.41 196.052	(/ft)	4.7	14 90	. 6.	5.6	7398.48 100.445	t (/sf)	10.84	1.44	۲.	1	-7.158 5971.77	80.0	(/sf fir)	9	10.56 6.23	6	1.867	e Load = Load =
e City U		Delta Com (MBtu)	ø.	33.8	38.0	41.8	-43.20	45.1	(00) (000)		~	-22.89	Ö	-25.88 cept	(SQQ) (QQ)	Ваѕетел	10.1	-24.60	31.0		sept (DD)	(SOS)	tion	ø) -13.59	Ø1EL	ØIELF	Base Typica Residua
Salt Lak			- 8-6 - 8-6	77	٠, د	3 10	R-38 R-49	9	Slope	Slab	9.		-10 2f	-10 4ft Inte	0 F	Unheated	9-	R-11 flr R-19 flr	-3Ø fl	,	Interd Slope	, Y	nfiltr F	\sim	603 603 603	1006/	Curve/.0	

	· o =		0						
	ponent (KBtu)	(/sf) 4.23 4.23 2.21 1.92 1.47 1.25 .94	959.92 32.114 (/ft)	4.64 . 89 . 114 . 39 . 14 . 000 . 13.05 3.053	(/sf)	2.29 2.48 2.44 2.39 2.37 2.37 2.295 31.872	(/sf) 4.62 2.19 1.39 1.39	195.40 770	
ooling Load	Delta Compo (MBtu) (P	Wall R-0 R-796 R-11 -1.10 R-13 -1.31 R-19 -1.42 R-27 -1.56	Slope(DD) Curve(DDS) Heated Basement	R-0 R-5 4ft -1.34 R-5 8ft -1.33 R-10 4ft -1.36 R-10 8ft -1.37 Intercept Slope(DD) Curve(DDS)	Crawl	R-0 R-11 flr .11 R-19 flr .09 R-30 flr .07 R-38 flr .06 R-49 flr .04 Intercept Slope(DD) Curve(DDS) -	Window U-value 1-Pane .00 2-Pane35 3-Pane46 R-1060	Slop Curv	= 16.66 MBtu = 8.92 MBtu = 2.39 MBtu
Š	ponent (KBtu)	(/sf) 8.42 3.37 2.56 1.84 1.57 1.20 .99	726.82 51.728 (/ft)	-18.86 -18.36 -17.86 -18.11 -16.86 13.604 117.87	(/sf)	1.24 1.24 1.49 1.64 2.058 562.26	/sf flr) .39 .24 .13	.333	Coad
Series Two	Delta Com (MBtu)	Ceiling R-6 R-7 R-11 -3.63 R-19 -3.95 R-22 -4.11 R-38 -4.43 R-49 -4.60 R-69	Slope(DD) 1. Curve(DDS) -{	R-0 R-5 R-5 R-10 R-10 R-10 R-10 R-10 Intercept Slope(DD) -1 Curve(DDS)	Unheated Basement	R-0 R-11 flr63 R-19 flr48 R-30 flr39 Intercept Slope(DD)6 Curve(DDS)	Infiltration (/ ELF Ach .0007(.52) .00 .0005(.37)17 .0003(.22)31	Slope/.001ELF Curve/.001ELF	Base Typica Residua
Mid Town Prototype Siding))	Wall (/sf) R-Ø . ØØ 28.82 R-7 -7.35 13.39 R-11 -8.40 11.19 R-13 -9.60 8.67 R-17 -11.19 5.35 R-34 -11.79 4.08	Slope(DD) 5193.93 Curve(DDS) 30.672 Heated Basement (/ft)	R-Ø -6.03 112.12 R-5 8ft -7.91 65.12 R-10 4ft -8.42 52.37 R-10 8ft -9.03 37.12 Intercept .000 Slope(DD) 3516.87 Curve(DDS) -19.243	Crawl (/sf)	R-0 R-11 flr -9.09 2.37 R-19 flr -10.6014 R-30 flr -11.49 -1.62 R-49 flr -11.69 -1.96 R-49 flr -12.27 -2.93 R-49 flr -12.27 -2.93 Slope(DD) 4625.22 Curve(DDS) -35.743) Window U-value (/sf) 1-Pane .00 117.19 2-Pane -9.87 48.65 3-Pane -12.48 30.55 R-10 -15.54 9.27	Slope(DD) 3893.91 Curve(DDS) 20.647	= 69.57 MBtu = 18.68 MBtu = 5.54 MBtu
Salt Lake City U WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 33.00 R-7 -12.16 12.74 R-11 -14.10 9.51 R-19 -15.84 6.60 R-22 -16.46 5.57 R-30 -17.28 4.20 R-38 -17.78 3.37 R-49 -18.20 2.67 R-60 -18.47 2.22	Slope(DD) 6057.26 Curve(DDS) -82.847 Slab (/ft)	R-0 -8.63 47.12 R-5 2ft -9.86 16.37 R-5 4ft -10.16 8.87 R-10 2ft -10.06 11.37 R-10 4ft -10.47 1.12 Intercept -18.236 Slope(DD) 5333.59 Curve(DDS) 8.264	Unheated Basement (/sf)	R-0 -6.03 7.47 R-11 flr -9.43 1.81 R-19 flr -10.5303 R-30 flr -11.24 -1.21 Intercept -4.463 Slope(DD) 4463.84 Curve(DDS) -416.520	Infiltration (/sf flr) ELF Ach .0007(.78) .00 12.81 .0005(.57) -5.13 8.54 .0003(.34) -9.67 4.75	Slope/.001ELF 13.999 Curve/.001ELF 6.146	Base Load : Typical Load : Residual Load :

	oling Load	Delta Component (MBtu) (KBtu)		/st //st	3.6	1.58 1.8	-13 - 50 1 2	1.1 78 - 61-	-27 - 95 8	n	•	Slope(DD) 853.79 Curve(DDS) -25.914	t (/ft		-5 4ft -1 12 2 6	-5 8ft -1.12 3.4	ft -1.15 2.7	-10 8ft	Slope(DD) 182.27 Curve(DDS)131	raw! (/sf		-11 fir .14 2.2	-19 flr .12 2.2	-38 f r	-49 TIF .07 2.1 Intercent 2 40	ope(DD) 16	10.15- (0.06) - 11.51		-Pane	41 2.7	-1072	Slope(DD) 248.98 Curve(DDS) 1.420	71.7	14.57 MBtu 7.40 MBtu .93 MBtu
ding Series Two	900	Delta Component (MBtu) (KBtu)	, , , , , ,	7 99 89-	-7 -3.08 3	-11 -3.57 2	-19 -4.02 1	-22 -4.19 1	-30 -4.42 1	-38 -4.56	R-68 -4.68 .77 R-60 -4.77 .63	Slope(DD) 1765.28 Curve(DDS) -53.788	Slab (/ft) H	-Ø -1.53 -10 ØF	-5 2ft -1.51 -9.38	-5 4ft -1.49 -8.71	ft -1.51 -9.21 ft -1.49 -0.20	Intercept -6.402	lope(UU) -638.8 urve(DDS) 27.89	Unheated Basement (/sf) C	-0 -1.01	1.08	-30 fir37 1.44 R	OC 01	ntercept 1.822	Slope(DD) -523.14 Curve(DDS) 46.580	nfiltration (/sf flr) W		005(.37) - 21	803 (.22)		Slope/.001ELF .312 Curve/.001ELF .469	400	Typical Load
MApartment Prototype Sid	Heating Load	Delta Component (MBtu) (KBtu)	i/)	.00 28	-7 -4.99 13.	-11 -5.71 10.	-13 -6.50	7 - 13 - 6.89 7.	24 -1.53 5.	-04 -1.84 G.		Slope(DD) 5009.67 Curve(DDS) 70.160	Heated Basement (/ft)	-0 -7.51 137.5	-5 4ft -9.26 79.5	81t -9.74 63.5	-10 8ft -10.29 45.2	rcept a(DD) 426	urve(DDS) -22.29	Crawi (/sf)	-0 .00 19.4	-11 flr -9.50 3.5 -19 flr -11.07	R-30 flr -12.0161 R-38 flr -12.2297	-49 flr -12.83 -1.9	ntercept -4.41	ope(DD) 4841.6 rve(DDS) -38.61	Window U-value (/sf)	-Pane .00 116.0	-Pane -10.01 46.5	e -12.52	-16.46 8.6	Slope(DD) 3603.12 Curve(DDS) 30.008	.45 MB	16.76 MBtu 5.78 MBtu
Salt Lake City U WYEC		Delta Component (MBtu) (KBtu)	s/)	-0 .00 32.	-/ -11.94 12.	10 110 11 15	-22 -16 14 5	-36 -16 62 3	-38 -17.40 3	-49 -17.78 2	-60 -18.03 2.	Slope(DD) 5637.50 Curve(DDS) -37.038	Slab	9.60 67.8	-5 21c -10.00 34.5	-10 2ft -10.78 28.7	-10 4ft -11.14 16.5	rcept -7. 8(DD) 6855	Curve(DDS) -47.80	nheated Basement (-0 -7.51 6.8	R-19 flr -11.32 .53	-30 fir -11.965	4 4 -	-3.48 4070 F	urve(DDS) -399.6	Infiltration (/sf flr)	7(.78) .00 12.6	8885(.57) -5.1	3(.34) -9.62 4.5		Slope/.001ELF 13.270 Curve/.001ELF 6.771	Base Load	lypical Load ≡ Residual Load ≈

Cooling Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 R-13 R-19 R-19 R-19 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 1130.28 Curve(DDS) -20.404 Heated Basement (/ft)	-0 -2.62 32. -5 8ft -3.19 28. -10 4ft -3.36 27. -10 8ft -3.55 26. Intercept 23.8 27. Slope(DD) -2.00 Curve(DDS) -2.00	rawi (/sf	R-10 R-11 flr69 4.75 R-19 flr -1.15 4.45 R-30 flr -1.50 4.22 R-38 flr -1.58 4.17 R-49 flr -1.81 4.02 Intercept 3.612 Slope(DD) 861.15 Curve(DDS) -107.771) Window U-value (/sf) 1-Pane .00 6.71 2-Pane72 2.81 3-Pane91 1.77 R-10 -1.14 .54	Slope(DD) 227.17 Curve(DDS) 1.021 = 67.62 MBtu = 31.37 MBtu = 6.83 MBtu
ng Series Two	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-0 R-7 -9.66 3.96 R-11 -11.20 2.96 R-19 -12.59 2.06 R-22 -13.09 1.74 R-30 -13.09 1.74 R-38 -14.16 1.04 R-49 -14.48 R-50 -14.69	Slope(DD) 1892.28 Curve(DDS) -27.914 Slab (/ft)	2ft -7.55 2.7 4ft -7.94 .3 4ft -7.99 .6 8 2ft -8.642 8 4ft -8.031 Intercept -9.03 Slope(DD) -196.6 Curve(DDS) 39.59	nheated Basement (/sf	R-0 R-11 flr -2.28 3.71 R-19 flr -2.28 3.71 R-30 flr -2.48 3.58 Intercept 3.403 Slope(DD) 267.86 Curve(DDS) -48.827	Infiltration (/sf flr) ELF Ach .0007(.58) .00 5.25 .0005(.41) -2.11 3.88 .0003(.25) -4.38 2.41	Slope/.001ELF 8.409 Curve/.001ELF -1.299 Base Load : Typical Load : Residual Load :
One Story Prototype Sidi ating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-0 R-7 -5.36 R-7 -5.36 R-11 -6.12 R-13 -6.98 2.39 R-19 -7.40 2.01 R-27 -8.02 1.46 R-34 -8.40 1.13	Slope(DD) 1390.55 Curve(DDS) 38.791 Heated Basement (/ft)	-6 4ft -7.90 13.7 -5 8ft -8.36 11.7 -10 4ft -8.35 11.7 -10 8ft -8.90 7.7 Intercept .90 7.7 Slope(DD) 632.7 Curve(DDS) .7	raw! (/s	R-8 R-11 flr -7.51 1.74 R-30 flr -9.62 1.02 R-38 flr -9.33 .65 R-49 flr -9.71 .31 Intercept287 Slope(DD) 1144.73 Curve(DDS) 39.433	Window U-value (/sf) 1-Pane .00 32.39 2-Pane -3.80 11.82 3-Pane -4.63 7.32 R-10 -5.61 2.03	Slope(DD) 827.77 Curve(DDS) 15.115 = 44.47 MBtu = 14.05 MBtu
San Antonio TX WYEC He	Delta Component (MBtu)	Ceiling (/sf) R-0 .00 10.43 R-7 -9.86 4.03 R-11 -11.44 3.01 R-12 -12.85 2.09 R-22 -13.35 1.76 R-30 -14.03 1.32 R-38 -14.44 1.06 R-49 -14.77 .84 R-60 -14.98 .71	Slope(DD) 1915.69 Curve(DDS) -26.286 Slab (/ft)	R-0 -7.98 13.34 R-5 2ft -9.28 5.51 R-5 4ft -9.53 4.00 R-10 2ft -9.47 4.37 R-10 4ft -9.76 2.62 Intercept .000 Slope(DD) 605.72 Curve(DDS) 53.422	nheated Basement (/sf	R-0 -5.72 2.91 R-11 flr -8.56 1.06 R-19 flr -9.24 .62 R-30 flr -9.68 .33 Intercept409 Slope(DD) 998.31 Curve(DDS) -68.638	Infiltration (/sf flr) ELF Ach .0007(.68) .00 3.82 .0005(.48) -2.17 2.41 .0003(.29) -3.95 1.26	Slope/.001ELF 3.247 Curve/.001ELF 3.166 Base Load = Typical Load = Residual Load =

	Cooling Load	Deita Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 6.23 R-7 -1.34 2.42 R-11 -1.53 2.02 R-13 -1.76 1.53 R-19 -1.88 1.28 R-27 -2.04 .95 R-34 -2.14 .74	Slope(DD) 915.81 Curve(DDS) 10.507 Heated Basement (/ft)	-6 4ft -1.03 48. -5 8ft -1.17 45. -6 8ft -1.19 44. -10 8ft -1.28 44. Intercept -1.23 43. Slope(DD) 150. Curve(DDS) .4	R-0 .00 4.95 R-11 flr11 4.77 R-19 flr25 4.56 R-30 flr23 4.56 R-38 flr23 4.57 R-49 flr22 4.59 Intercept 4.340 Slope(DD) 286.21 Curve(DDS) -32.451	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope(DD) -801.36 Curve(DDS) 24.356 37.96 MBtu 27.04 MBtu 12.42 MBtu
ding Series Two	ŭ	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-0 R-7 -3.80 10.18 R-7 -3.80 10.18 R-19 -4.95 1.93 R-22 -5.12 1.63 R-38 -5.50 1.01 R-49 -5.50 1.01 R-49 -5.50 1.01	Slope(DD) 1754.91 Curve(DDS) -6.526 Slab (/ft)	2ft -3.06 -2. 4ft -3.07 -2. Ø 2ft -3.07 -2. Ø 4ft -3.05 -1. Intercept .0 Slope(DD) -880. Curve(DDS) 81.6	R-0 -1.03 3.24 R-11 flr72 3.75 R-19 flr71 3.77 R-30 flr70 3.79 Intercept 3.783 Slope(DD) 24.62 Curve(DDS) -25.582	Infiltration (/sf flr) ELF Ach .0007(.57) .00 4.64 .0005(.41) -1.38 3.49 .0003(.25) -2.93 2.20	Slope/.001ELF 7.876 Curve/.001ELF -1.771 Base Load = Typical Load = Residual Load =
Mid Town Prototype Sid	eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 -2.52 3.30 R-13 -2.84 1.97 R-19 -3.80 1.64 R-27 -3.22 1.18 R-34 -3.35 .90	Slope(DD) 1073.79 Curve(DDS) 74.554 Heated Basement (/ft)	R-6 R-5 4ft -3.16 14.11 R-5 8ft -3.26 11.61 R-10 4ft -3.26 11.61 R-10 8ft -3.38 8.61 Intercept 3.263 Slope(DD) 451.89 Curve(DDS) 4.919	-0	Window U-value (/sf) 1-Pane .00 27.22 2-Pane -2.63 8.95 3-Pane -3.13 5.47 R-10 -3.72 1.38	Slope(DD) 544.64 Curve(DDS) 18.420 19.89 MBtu 7.05 MBtu 1.86 MBtu
San Antonio TX WYEC	H ₀	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø 10.60 R-7 -4.05 3.84 R-11 -4.70 2.77 R-19 -5.28 1.80 R-22 -5.45 1.51 R-30 -5.69 1.12 R-38 -5.83 .88 R-49 -5.93 .71 R-60 -6.00 .60	Slope(DD) 1582.78 Curve(DDS) 34.543 Slab (/ft)	R-0 R-5 2ft -3.53 4.86 R-5 4ft -3.59 3.36 R-10 2ft -3.57 3.86 R-10 4ft -3.63 2.36 Intercept .000 Slope(DD) 553.25 Curve(DDS) 42.184	1 flr -2.58 1 9 flr -3.28 8 flr -3.48 Intercept0 Slope(DD) 665.6 Curve(DDS) -54.03	Infiltration (/sf flr) ELF Ach .0007(.68) .00 2.95 .0005(.48) -1.51 1.69 .0003(.29) -2.62 .76	Slope/.001ELF 1.291 Curve/.001ELF 4.167 Base Load = Typical Load = Residual Load =

	omponent (KBtu)	(/sf) 5.06 5.28 2.28 1.89 11.49 11.29 .91	866.42 13.678 (/ft)	1.0.4.21.0.2	(/sf) 3.91 4.06 3.86 3.77 3.77 3.443 3.443 3.443 489.24	(/sf) -1.94 -4.64 -3.16 -1.41	653.22 21.966
	elta ((MBtu)	-1.888 -1.018 -1.191 -1.199 -1.392	(DD) (DDS) sement	85 -1.02 -1.02 -1.05 -1.05 (00)	. 88 		• (DD) - • (DDS) MBtu MBtu
ing Load	۵	Wat R-6 R-7 R-11 R-13 R-27 R-34	Slope Curve	SS Aft 10 Aft 10 Bft Slope Curve	138 fr -138 fr -38 fr -38 fr -38 fr Interc	indow U-versions 1-Pane 2-Pane 3-Pane R-10	Slope Curve 35.85 ME 25.79 ME
Coolin	Component (KBtu)	(/sf) 10.51 3.87 2.81 2.81 1.85 1.18 1.18 .95	57.77 9.462 (/ft) H	7.56 7.33 7.73 7.73 7.65 7.65	2.51 3.00 3.00 3.07 3.07 8.3.07 8.3.122 53.85 2.964	sf flr) W 4.83 3.66 2.32	8.354 2.083 Load = Load =
Two	elta Comp (MBtu) (0 	(00) 16 (00S) 1	-2.46 -2.45 -2.46 -2.46 -2.43 ept 0D) -11	asement 85 55 51 51 ept 	ion (/ .000 -1.41 -3.01	Base Cypical
Series	۵	C R R R R R R R R R R R R R R R R R R R	Slope Curve Slab	2ft 2ft 2ft 3 2ft 3 bec Curve	Unheated B R-8 R-11 flr R-19 flr R-3Ø flr Interc Slope(Infiltrat ELF Ach .0007(.58) .0005(.41) .0003(.25)	Slope/.0011 Curve/.0011
e Siding	Component (KBtu)	7.65 2.97 2.36 2.36 1.69 1.99	847.67 Ø6.839 (/ft)	25. 7. 7. 1.5.	(/sf) 6.27 1.68 1.09 .81 .74 .55 .118 802.39	25.78 7.94 4.81	32.50 0.613
: Prototype	elta ((MBtu)		(DD) 1 (DDS) 1 sement	-2.99 -3.48 -3.54 -3.54 -3.61 -3.61 (DD)	.000 -2.76 -3.11 -3.28 -3.32 -3.32 -3.43 -3.43 (00) (00)	-value e .2.57 e .3.02 -3.55	e(DD) 4 e(DDS) 2 MBtu MBtu
MApartment ating Load	۵	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Slope Curve Heated Ba		R-6 R-11 flr R-19 flr R-38 flr R-49 flr Inter Slope Curve	Window U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 18.57 N 6.31 N 2.29 N
WYEC N	ponent (KBtu)	(/sf) 10.84 3.88 2.77 1.77 1.48 1.69 .69	540.20 48.715 (/ft)	16.3 3.6 2.5 2.5 1.5 1.5 236.0	1.28 1.28 .36 .17 .139 420.27	(/sf flr) 2.63 1.41	4.688 4.6888 1.08d
nio TX	Delta Comp (MBtu) (0 0 1 4 4 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	e(DD) 1 e(DDS)	-3.45 -3.65 -3.69 -3.68 -3.72 -3.72 -3.72 -3.72 -3.72 -6.00)	aated Basement -2.99 1 flr -3.47 9 flr -3.66 Intercept Slope(DD) Curve(DDS) -	Ø 4 4 Ø 8 8	.001ELF .001ELF Base Typica Residua
San Antoni	J	C. R.	Slope Curve	2ft 4ft 3 2ft 3 4ft Inte Slop Curv	R-0 R-11 flr R-19 flr R-30 flr Inte Slop Curv	Infiltrat ELF Ach .0007(.68) .0005(.49) .0003(.29)	Slope/.curve/.

	Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 1.34 R-757 .83 R-1165 .76 R-1384 .59 R-27 -1.07 .39 R-34 -1.15 .32	Slope(DD) 417.48 Curve(DDS) -31.242 Heated Basement (/ft)			Window U-value (/sf) 1-Pane .00 -4.52 2-Pane .40 -2.35 3-Pane .56 -1.51 R-10 .7451	Slope(DD) -223.56 Curve(DDS) 1.984 8.46 MBtu 2.65 MBtu .56 MBtu
ing Series Two	· ·	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 3.55 R-7 -3.26 1.40 R-19 -4.25 .76 R-22 -4.44 .64 R-30 -4.70 .64 R-38 -4.85 .37 R-49 -4.95 .31 R-60 -5.01 .27	Slope(DD) 704.73 Curve(DDS) -18.678 Slab (/ft)	R-6 R-5 2ft -1.04 -6.46 R-5 4ft -1.04 -6.46 R-10 2ft -1.00 -6.22 R-10 4ft68 -4.29 Intercept .000 Slope(DD) -1846.80 Curve(DDS) 86.671	R-07953 R-11 flr .31 .18 R-19 flr .69 .43 R-30 flr .93 .58 Intercept 1.021 Slope(DD) -602.56 Curve(DDS) 58.377	Infiltration (/sf flr) ELF Ach .0007(.50) .0055 .0005(.35) .1347 .0003(.21) .3532	Slope/.001ELF -1.299 Curve/.001ELF .731 Base Load = Typical Load = Residual Load =
One Story Prototype Sid	Heating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-11 -5.62 2.78 R-13 -6.29 1.56 R-19 -6.29 1.56 R-27 -7.02 .91 R-34 -7.26 .70	Slope(DD) 784.20 Curve(DDS) 101.668 Heated Basement (/ft)	R-6 R-5 4ft -4.89 8.27 R-5 8ft -5.20 6.40 R-10 4ft -5.15 6.70 Intercept 1.209 Slope(DD) 291.82 Curve(DDS) 3.320 Crawl (/sf)	R-0 .00 4.07 R-11 flr -6.6324 R-19 flr -7.2464 R-30 flr -7.5383 R-38 flr -7.6087 R-49 flr -7.7999 Intercept -1.186 Slope(DD) 346.65 Curve(DDS) 132.124	Window U-value (/sf) 1-Pane .00 21.98 2-Pane -2.89 6.35 3-Pane -3.36 3.81 R-10 -3.91 .83	Slope(DD) 304.11 Curve(DDS) 20.023 35.58 MBtu 9.86 MBtu 4.96 MBtu
San Diego CA TMY	¥ .	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0	Slope(DD) 1640.61 Curve(DDS) 12.217 Slab (/ft)	R-Ø R-S 2ft -5.70 3.39 R-S 4ft -5.89 2.24 R-10 2ft -5.84 2.54 R-10 4ft -6.05 1.28 Intercept .000 Slope(DD) 175.72 Curve(DDS) 73.662	R-0 -3.26 1.95 R-11 flr -6.06 .13 R-19 flr -6.5820 R-30 flr -6.9142 Intercept948 Slope(DD) 689.48 Curve(DDS) -24.265	Infiltration (/sf flr) ELF Ach .0007(.56) .00 1.51 .0005(.41) -1.59 .48 .0003(.25) -2.4407	Slope/.001ELF -2.046 Curve/.001ELF 6.007 Base Load = Typical Load = Residual Load =

		(KBtu)	(/sf) .75 .21 .044 .022 .023	-7.37 27.254 (/ft)	-16.83 -15.08 -14.58 -14.58 -11.293 -261.81	(/sf)	1.034 1.034 1.034 1.034 3.034 3.034	(/sf) -17.60 -12.88 -8.44 -3.22	29.252 29.252
		ΰς	7 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	DD) DDS) ement	.03 .09 .09 .03		.00 .37 .34 .71 .71 .80 .1 .05		s) -1
	peo.	Delta (MBt	HEOF4	<u> </u>	t t t t t t t t t t t t t t t t t t t		fir fir fir fir fir fir fir lope(DD) urve(DDS)	U-val	ve (DDS) ve (DDS) WBtu MBtu MBtu
	9		*************************************	Slope Curve	16 84 10 84 10 84 10 84 10 10 10 10 10 10 10 10 10 10 10 10 10 1	- ×	# 0 2 8 8 B B B B B B B B B B B B B B B B B	1-Pa 2-Pa 3-Pa R-10	Slo Cur 6.23 4.10 6.86
	Coolin			Ŧ	\$ \$ \$ \$ \$ \$	Ç	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. W.	н н п
		onent KBtu)	(/sf) 1.89 1.53 1.20 1.01 1.01 1.01 5.00 5.00	67.12 8.218 (/ft)	22.33 20.33 20.33 19.83 13.83 .000 66.74	(/st)	-1.12 41 29 22 857 10.66	sf fl. -1.94 -1.74 -1.26	5.25Ø 3.542 Load Load
		Compo	083 082 083 083 083 083 083 083 083 083 083 083	111	93399 9389 1 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ement	16 27 34 38 -2	988 82	Sase ical
1		elta (MBt	ng 11.	(S00) (003)	 	Ваѕеп	(00) (00)		001ELF 001ELF Typ Resi
er i es		۵	R-60 R-11 R-11 R-13 R-13 R-22 R-38 R-38 R-49	Slope Curve Slab	2ft 4ft 2ft Inter Slope Curve	ated	fir fir fir fir Slope	iltrat Ach 7(.50) 5(.35) 3(.21)	9./edo
v					R R - 5 R - 5 R - 11 R - 11 8 - 11 8 - 11	Unhe	R-6 R-11 R-19 R-30	Infi ELF .0007 .0005	Slo
iding		د <i>د</i>	~48~S4S8	18 ~	38827277		യ വ ത ത ത വ ത ത സ വ ത ത ത ത ത	~ 8888	
ο		ponent (KBtu)	7.00071	532.41 96.ø18 (/ft)	20.22 11.47 9.97 10.22 7.97 4.246 347.18	(/sf)	3.53 1.03 1.03 1.03 1.399 69.665	15.3 14.9 2.9	285.28 11.17
rototyp		E CO	0 7 6 4 4 4 8 9 9	t c	31 72 71 80		23 23 23 23 23 23	.00 1.50 1.78 2.10	- (0
P	70	Delta (MBt	112222	e (DD) e (DDS) lasemen	(00S)		-11- -22- -22- -26(00) ve(00)		pe(DD)
Town	g Loa		R R R R R R R R R R R R R R R R R R R	Slop Curve	8ft 8ft 8 Aft Inter Slope	-	1 fl 9 fl Slo Cur	A 20 − 0 €	Slo Cur 3.42 3.85
P : X	eating			Д Ф	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Cra	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	win (
	ž	ent 3tu)	/sf) 9.42 3.18 2.19 1.29 1.08 .79 .49	8.25 .907 /ft)	8.47 2.72 2.97 1.72 2.92 2.92 1.23	/sf)	1.35 .46 .16 .01 .379 9.79	f flr 1.22 .58 .17	.917 .917 Load Load
TMY		CKBt.	Ø 2 4 8 L 8 8 9 L	1068	88 5 2 4 8 8 5	ant (1 2 1 1 -37	.øø .77 .26	ase cal
₹		(MBtu)	0 1 1 1 1 1 1 1 1 0 6 2 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(800) (008)	-1.7 -1.9 -2.8 -2.8 -2.8 (00) (00S)	3asement	-1.3 -1.8 -2.0 -2.0 -2.1 -2.1 -2.1 -2.0 -0.0 -0.0 -0.0	i oi .	7.001ELF 7.001ELF Typi Resid
Diego		90	6 i i i i i i i i i i i i i i i i i i i	lope urve lab	2ft 2ft 1ntero Slope Curve	ted B	fir fir Interd Curve	tra Ach (.58	o`o`
San D			ပီထိထိထိထိထိထိထိထိထိထိ	νο ν	R-8 R-5 R-18 R-19 C	Unhea	R-6 R-11 R-19 R-30 R-30	Inf: ELF .0007 .0005	Curv

	ng Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .00 .78 R-719 .17 R-1122 .08 R-132501 R-272602 R-3425 .00	Slope(DD) -56.11 Curve(DDS) 37.311 ated Basement (/ft)	-6 4ft09 -23.79 -5 8ft09 -21.45 -5 8ft09 -21.45 -10 4ft09 -21.62 -10 8ft04 -19.95 Intercept -17.570 Slope(DD) -283.15 Curve(DDS) 3.203	1 flr 42 2 9 flr 47 1 8 flr 55 6 9 flr 59 6 Intercept 59 6 Slope(DD) -228.03 Curve(DDS) 4.084	1-Pane .00 -13.42 2-Pane .40 -10.65 3-Pane .92 -7.01 R-10 1.54 -2.73	Slope(DD) -1223.94 Curve(DDS) 27.102 4.68 MBtu 2.92 MBtu 3.69 MBtu
g Series Two	Cooling	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 -1.29 R-11 -1.49 1.38 R-19 -1.67 1.07 R-22 -1.78 -1.93 R-38 -2.01 R-49 -2.05 R-44 R-60 -2.07 -4.08	Slope(DD) 1021.83 Curve(DDS) -62.506 Slab (/ft) He	R-016 -23.95 R- R-5 2ft05 -20.12 R- R-10 2ft01 -18.62 R- R-10 4ft04 -19.79 R- Intercept .15 -13.45 R- Slope(DD) -5330.08 Curve(DDS) 286.100	1 flr16 -1.19 R 9 flr2846 R 8 flr5108 R Intercept332 Slope(DD) -568.42 Curve(DDS) 52.600	Infiltration (/sf flr) WiseLF Ach .0007(.50) .0081 .0005(.35) .1965 .0003(.21) .4543	Slope/.001ELF -1.667 Curve/.001ELF .729 Base Load = Typical Load = Residual Load =
tment Prototype Sidin	ating Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 -1.09 1.60 R-11 -1.24 1.11 R-13 -1.34 .80 R-27 -1.46 .42 R-34 -1.51 .27	Slope(DD) 263.06 Curve(DDS) 125.111 Heated Basement (/ft)	R-0 R-5 4ft -2.08 6.61 R-5 8ft -2.13 5.11 R-10 4ft -2.12 5.44 R-10 8ft -2.17 3.61 Intercept .606 Slope(DD) 266.31 Curve(DDS) 2.042	R-0 'R-11 flr -2.03 .42 R-19 flr -2.18 .17 R-30 flr -2.26 .02 R-36 flr -2.2901 R-49 flr -2.3411 Intercept189 Slope(DD) 176.15 Curve(DDS) 117.216	WindowwU-value (/sf) 1-Pane .00 13.08 2-Pane -1.29 4.16 3-Pane -1.52 2.53 R-10 -1.80 .62	Slope(DD) 239.68 Curve(DDS) 9.692 12.17 MBtu 3.07 MBtu 4.58 MBtu
	T.	Delta Component (MBtu) (KBtu)	Ceiling R-0 R-0 R-7 -3.77 3.06 R-11 -4.37 2.06 R-19 -4.91 1.16 R-22 -5.19 70 R-38 -5.28 R-49 -5.35 R-49 -5.35 8-43	Slope(DD) 922.80 Curve(DDS) 110.306 Slab (/ft)	R-Ø -2.09 6.28 R-5 2ft -2.20 2.78 R-5 4ft -2.22 2.11 R-10 2ft -2.21 2.44 R-10 4ft -2.24 1.44 Intercept .000 Slope(DD) 427.00 Curve(DDS) 12.433	R-0 -1.85 .72 R-11 flr -2.22 .11 R-19 flr -2.3004 R-30 flr -2.3613 Intercept364 Slope(DD) 316.21 Curve(DDS) -20.358	Infiltration (/sf flr) ELF Ach .0007(.58) .00 .87 .0005(.42)75 .25 .0003(.25) -1.1408	Slope/.001ELF -1.375 Curve/.001ELF 3.750 Base Load = Typical Load = Residual Load =

	component (KBtu)	(/sf) (.31 (.15 (.09) (.09)	74.86 -3.270 (/ft)		(/sf)	. 14 . 24 . 24 . 24 . 25 . 25 . 4 . 36	(/sf) .32 .38 .25	47.80
Cooling Load	Delta Cor (MBtu)	R-0 R-7 R-7 R-1106 R-1322 R-1924 R-2726 R-3426	Slope(DD) Curve(DDS) Heated Basement	R-031 R-5 4ft28 R-5 8ft26 R-10 4ft27 R-10 8ft25 Intercept Slope(DD) Curve(DDS)	Crawl	R-0 R-11 flr .15 R-19 flr .15 R-30 flr .16 R-36 flr .16 R-49 flr .17 Intercept Slope(DD) Curve(DDS)	Window U-value 1-Pane .00 2-Pane .01 3-Pane01 R-1004	Slope(DD) Curve(DDS) 1.95 MBtu .52 MBtu 38 MBtu
ing Series T⊮o	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø .74 R-772 .28 R-1184 .20 R-1997 .13 R-2297 .11 R-38 .1.04 .07 R-49 .1.06 .05 R-60 .1.08 .04	Slope(DD) 121.18 Curve(DDS) .753 Slab (/ft)	R-0 R-5 2ft3052 R-5 4ft2734 R-10 2ft2840 R-10 4ft2628 Intercept .0000 Slope(DD) -98.23 Curve(DDS)281	Unheated Basement (/sf)	R-0 R-11 flr10 .07 R-19 flr05 .11 R-30 flr02 .13 Intercept .178 Slope(DD) -70.55 Curve(DDS) 4.594	Infiltration (/sf flr) ELF Ach .0007(.93) .00 .05 .0005(.67)01 .04 .0003(.40)03 .03	Slope/.001ELF .130 Curve/.001ELF081 Base Load = Typical Load = Residual Load =
One Story Prototype Sid ating Load	Delta Component (MBtu) (KBtu)	Wali R-0 R-7 R-1 R-11 -12.42 7.40 R-13 -14.33 5.71 R-19 -15.27 4.87 R-27 -16.75 3.55 R-34 -17.66 2.74	Slope(DD) 3484.77 Curve(DDS) -9.887 Heated Basement (/ft)	R-0 -7.20 62.37 R-5 4ft -10.60 41.89 R-5 8ft -11.81 34.68 R-10 4ft -11.47 36.65 R-10 8ft -13.13 26.65 Intercept 5.162 Slope(DD) 2514.90 Curve(DDS) -26.646	Craw! (/sf)	R-0 R-11 flr -19.17 -1.05 R-19 flr -21.72 -2.71 R-30 flr -22.78 -3.39 R-38 flr -23.02 -3.55 R-49 flr -23.72 -4.00 Intercept -5.210 Slope(DD) 2085.61 Curve(DDS) 224.961	Window U-value (/sf) 1-Pane .00 79.18 2-Pane -8.97 30.64 3-Pane -11.10 19.10 R-10 -13.61 5.53	Slope(DD) 2289.33 Curve(DDS) 26.891 91.77 MBtu 36.06 MBtu 9.18 MBtu
San Francisco CA TMY He	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .000 20.25 R-7 -18.58 8.18 R-11 -21.55 6.25 R-19 -24.21 4.52 R-22 -25.28 3.83 R-30 -26.75 2.89 R-38 -27.59 R-49 -28.33 1.85 R-60 -28.80 1.54	Slope(DD) 4242.92 Curve(DDS) -139.693 Slab (/ft)	R-Ø R-E 2ft -13.59 23.88 R-5 4ft -14.53 18.22 R-1Ø 2ft -14.22 20.08 R-1Ø 4ft -15.37 13.16 Intercept .000 Slope(DD) 5032.69 Curve(DDS) -40.624	Unheated Basement (/sf)	R-0 -7.20 6.72 R-11 fir -16.87 .44 R-19 fir -19.25 -1.10 R-30 fir -20.78 -2.09 Intercept -4.703 Slope(DD) 3511.05 Curve(DDS) -250.182	Infiltration (/sf flr) ELF Ach .0007(.73) .00 9.72 .0005(.51) -5.49 6.16 .0003(.31)-10.01 3.22	Slope/.001ELF 8.376 Curve/.001ELF 7.874 Base Load = Typical Load = Residual Load =

		Component (KBtu)	(/sf) .38 .20 .17 .12 .09 .08	79.94 1.546 (/ft)	-1.01 76 51 51 26 26 551 1.474	(/st)	. 13 . 22 . 23 . 25 . 25 . 27 . 27 . 49 . 85	(/sf) 10 16 06	.307
	Cooling Load	Delta Comp (MBtu) (Wall R-0 R-7 09 R-11 10 R-13 13 R-19 14 R-34 15	Slope(DD) Curve(DDS) Heated Basement	R-612 R-5 4ft11 R-5 8ft10 R-10 4ft10 R-10 8ft09 Intercept Slope(DD)	Crawl	R-0 R-11 fir .05 R-19 fir .06 R-38 fir .07 R-38 fir .07 R-49 fir .08 Intercept .08 Slope(DD)	Window U-value 1-Pane .00 2-Pane .00 3-Pane .00 R-10 .01	Slope(DD) Curve(DDS) 1.53 MBtu .87 MBtu .29 MBtu
ng Series Two	Coo	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø R-Ø R-1134 .45 R-1139 .36 R-1244 .28 R-2247 .24 R-3850 .18 R-4954 R-6055 .10	Slope(DD) 273.47 Curve(DDS) -17.258 Slab (/ft)	2ft15 -1.76 4ft13 -1.26 4ft12 -1.01 0 2ft12 -1.01 0 4ft1176 Intercept .000 Slope(DD) -318.17 Curve(DDS) 14.179	Unheated Basement (/sf) (R-0 R-11 flr03 .08 R-19 flr .01 .14 R-30 flr .03 .18 Intercept .294 Slope(DD) -154.14 Curve(DDS) 16.323	Infiltration (/sf flr) W ELF Ach .0007(.93) .00 .04 .0005(.67) .01 .05 .0003(.40) .00 .04	Slope/.001ELF .208 Curve/.001ELF208 Base Load = Typical Load = Residual Load =
Mid Town Prototype Siding	eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-7 R-7 R-1 R-11 R-13 R-13 R-13 R-13 R-13 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 1995.57 Curve(DDS) 190.880 Heated Basement (/ft)	-0	Crawl (/sf)	R-0 R-11 flr -6.16 .27 R-19 flr -6.9097 R-38 flr -7.26 -1.56 R-38 flr -7.34 -1.70 R-49 flr -7.58 -2.09 Intercept -2.946 Slope(DD) 1571.64 Curve(DDS) 206.169	Window U-value (/sf) 1-Pane .00 55.36 2-Pane -5.42 17.72 3-Pane -6.42 10.80 R-10 -7.59 2.65	Slope(DD) 1033.03 Curve(DDS) 40.302 39.82 MBtu 14.54 MBtu
San Francisco CA TMY	H.	Deita Component (MBtu) (KBtu)	Ceiling (/sf) R-Ø 21.73 R-7 -8.3Ø 7.89 R-11 -9.63 5.68 R-19 -10.82 3.7Ø R-3Ø -11.66 2.3Ø R-38 -11.95 1.81 R-49 -12.16 1.46 R-6Ø -12.3Ø 1.23	Slope(DD) 3256.26 Curve(DDS) 68.970 Slab (/ft)	2ft -5.12 30.0 4ft -5.97 8.7 2ft -5.97 8.7 3 4ft -6.08 6.0 Intercept .00 Slope(DD) 1963.0 Curve(DDS) 106.36	Unheated Basement (/sf)	R-0 -3.99 3.88 R-11 flr -5.99 .55 R-19 flr -6.5437 R-30 flr -6.9097 Intercept -2.560 Slope(DD) 2165.32 Curve(DDS) -177.203	Infiltration (/sf flr) ELF Ach .0007(.72) .00 5.26 .0005(.50) -3.34 2.47 .0003(.31) -5.45 .72	Slope/.001ELF -1.459 Curve/.001ELF 12.813 Base Load = Typical Load = Residual Load =

	Component (KBtu)	(\$ \$) 31 . 115 . 13 . 60 . 66 . 65 .	57.56 .184 (/ft)	85 35 35 36 36 36	(/sf)	.06 .15 .14 .14 .123 .7.30	(/sf) .11 .64 .63	3.67
Cooling Load	Delta Con (MBtu)	Watl R-6 R-705 R-1106 R-1307 R-1908 R-2708 R-3409	Slope(DD) Curve(DDS) Heated Basement	R-Ø R-5 4ft05 R-5 8ft04 R-10 4ft04 R-10 8ft04 Intercept Slope(DD) Curve(DDS)	Crawl	R-0 R-11 flr .06 R-19 flr .05 R-30 flr .05 R-36 flr .05 R-49 flr .05 Intercept .25 Slope(DD)	Window U-value 1-Pane .00 2-Pane01 3-Pane01 R-1002	Slope(DD) Curve(DDS) 1.19 MBtu .59 MBtu
Siding Series Two Co	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 R-11 R-13 R-19 R-22 R-26 R-36 R-36 R-36 R-36 R-36 R-36 R-36 R-3	Slope(DD) 185.11 Curve(DDS) -2.723 Slab (/ft)	R-085 R-5 2ft0435 R-6 4ft0435 R-10 2ft0435 R-10 4ft0419 Intercept .000 Slope(DD) -77.80 Curve(DDS)802	Unheated Basement (/sf)	R-00604 R-11 flr01 .03 R-19 flr00 .05 R-30 flr .01 .07 Intercept .100 Slope(DD) -47.31 Curve(DDS) 3.779	Infiltration (/sf flr) ELF Ach .0007(.93) .00 .08 .0005(.67)02 .06 .0003(.40)04 .04	Slope/.001ELF .146 Curve/.001ELF052 Base Load = Typical Load = Residual Load =
MApartment Prototype Sid Heating Load	Delta Component (MBtu) (KBtu)	Wall R-6 R-7 -3.14 6.09 R-11 -3.59 4.68 R-13 -3.98 3.44 R-19 -4.17 2.83 R-27 -4.44 1.99 R-34	Slope(DD) 1677.64 Curve(DDS) 241.215 Heated Basement (/ft)	R-0 -5.37 61.55 R-5 4ft -6.36 28.39 R-5 8ft -6.58 21.05 R-10 4ft -6.54 22.55 R-10 8ft -6.83 12.72 Intercept -5.960 Slope(DD) 2041.56 Curve(DDS) -7.240	Craw! (/sf)	R-0 .00 12.03 'R-11 flr -6.86 .59 R-19 flr -7.6776 R-30 flr -7.95 -1.22 R-38 flr -8.01 -1.33 R-49 flr -8.20 -1.33 R-49 flr -8.20 -1.33 R-49 flr -8.20 -1.33 R-40 flr -8.20 -1.33 Curve(DDS) 1316.96) Window U-value (/sf) 1-Pane .00 52.53 2-Pane -5.40 15.07 3-Pane -8.26 9.04 R-10 -7.29 1.94	Slope(DD) 712.03 Curve(DDS) 48.403 = 37.64 MBtu = 12.92 MBtu
San Francisco CA TMY	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 .00 21.53 R-7 -8.49 7.39 R-11 -9.84 5.13 R-19 -11.06 3.10 R-22 -11.37 2.59 R-36 -11.78 1.90 R-38 -12.21 1.19 R-49 -12.21 1.19 R-60 -12.32 1.00	. Slope(DD) 2603.87 Curve(DDS) 173.453 Slab (/ft)	R-0 -6.03 39.39 R-5 2ft -6.67 18.22 R-5 4ft -6.81 13.55 R-10 2ft -6.76 15.22 R-10 4ft -6.93 9.55 Intercept .000 Slope(DD) 3442.99 Curve(DDS) 52.461	Unheated Basement (/sf)	R-11 flr -7.08 .23 R-19 flr -7.6962 R-30 flr -7.92 -1.17 Intercept -2.663 Slope(DD) 2035.67 Curve(DDS) -178.651	Infiltration (/sf flr) ELF Ach .0007(.72) .00 4.77 .0005(.50) -3.40 1.93 .0003(.31) -5.39 .28	Slope/.001ELF -3.500 Curve/.001ELF 14.740 Base Load : Typical Load : Residual Load :

		omponent (KBtu)	(,sf) .383 .333 .193 .151	156.33 -8.859 (/ft)	01 60	(/sf)	. 42 . 56 . 55 . 55 . 55 . 55 . 53 . 32.27	(/sf) .20 .14 .09	16.09	
		elta ((MBtu)	0.1.1.1.1.2888.288.28.44.4.6.79.28.28.28.39.39.39.39.39.39.39.39.39.39.39.39.39.	(DD) (DDS) sement	68 69 68 70 68 (DD) (DD)		.80 .22 .21 .21 .21 .21 .21 (0D) (DD)		(800) (008)	ָ בר בר בר בר בר בר בר בר בר בר בר בר בר
	Cooling Load	۵	**************************************	Slope Curve	-0 -5 4ft -5 8ft -10 4ft -10 8ft Inter Slope Curve	- Aer	-0 -11 fr -19 fr -30 fr -49 fr Inter Slope Curve	indow U-v 1-Pane 2-Pane 3-Pane R-10	Slope (Curve)	4.18 MB .91 MB 9Ø MB
	Cool			·	«««««	Ç	~ ~ ~ ~ ~ ~ ~	₹		11 H H
		omponent (KBtu)	(/sf) 1.54 1.64 1.64 1.33 1.28 1.22 1.13	305.91 -7.766 (/ft)	202. 6.00	(/sf)	01 .37 .37 .42 .563 .196.91	.67 .07 .05	760.	e Load
0		~G		~ (i)	S) t . 888 (S) (S)	елелt	66 21 08 08 00	9.9.9. 8.8.8	بديد	Base pica idua
≱		Delta (MBt	5)	(00) (008)	900	Base	fir -: fir -: fir -: fir -: Slope(DD)	2000 1 1	MOTELF MOTELF	Tyl
er:es			Ceil R-0 R-7 R-11 R-22 R-38 R-38 R-49	Slop	S-fttt	ated	fir fir fir fir fir fir fir fir fir fir	Ach 7 (-57 5 (-41 3 (-24	pe/.g	
S					888-1888-1888-1888-1888-1888-1888-1888	Unhe	R-11 R-11 R-30	Inf: ELF: 00007 00005	Slop	
ding										
S		(KBtu)	/sf) 60.16 7.87 8.67 8.67 4.77	2.69 .143 /ft)	1.92 8.62 8.62 8.72 8.666 7.65	/sf)	5.19 2.880 5.71 7.92 9.11 9.26 1.340	/sf) 2.35 6.92 2.52 3.83	375	
type		E O	08 8 8 8 9 7 4 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6232-116.	4 4 6 6 4 4 4 6 6 9 4 4 6 6 9 6 9 6 9 6	J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(/ 8 142 4 66 5 42 5 13	5936 -20	
Prototype		elta C. (MBtu)	22. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	(DD) (DDS) sement	-8.1 -12.3 -14.4 -13.5 -18.6 (DD) (DD)		.000 -27.71 -32.20 -34.97 -35.60 -37.42 (DD) (DD)	. 00. -13.94 -18.48	(SQQ)	MBtu MBtu MBtu
Story	Load	۵	100 - 110 -	lope urve d Ba	484844 		1 + +	- C a a a c a a a c a a a a a a a a a a a	lope urve	65 ME 21 ME
o o	ing		≥ ∝ ∝ ∝ ∝ ∝ ∝ ∝	S C Gate	1115 115 116 0 0 1	raw	11111 4 3 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 do w 2 - P W W - 1 - P	νü	153. 52. 9.
ő	Heat			.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	U	888888	<u>.</u> ¥		11 11 11
WYEC		onent (Btu)	(/sf) 31:22 12:53 9:54 6:86 5:82 4.41 3:57 2:32	25.75 5.521 (/ft)	66.50 32.52 20.78 26.62 10.78 11.102 77.46	(/sf)	9.91 -1.05 -3.94 -5.79 0.727 79.29	7.02 7.03 7.14	. 468	Load Load Load
≨		Compone (KBt	5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-196	61 61 61 61 61 61 61 61 61 61 61	ent	14 602 46 32 -16 -16 -517	(/s	23	Sa Se Ca I
		(MBtu)	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(S00) (00)	-12.0 -18.0 -19.0 -18.0 -18.0 (00) (00) (00S)	a se		ion -7.6 -15.2	JELF JELF	Typ: Resid
¥ •		a C	11. 11. 11. 11. 11. 11. 12. 13. 13. 14. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	0 C 4	**************************************	9 Pe	000	trat Ach .75) .54)	/.øø16 /.øø16	_
eattl				<u>8</u> 2 8	-6 -5 -15 -16 -16 -16 -16 -17 -16 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17	Unheat	-0 -11 fl -19 fl -30 fl Inte	Infil ELF 0007(0005(0003(Slope	

		(KBtu)	(/sf) 84	. 51	4	S. C.	ກເ	57.			249.64 17.218	(/ft)	-1.68	4	-1.18		9 8 9 8 1	-97.08	700.1	(/sf)	60 (. 65	9	စစ	.67	-11.65 -9.801		(/st)	54	•		٠.	-1.0/4		
		(MBtu)	6	; =:	٦.	23	., c	., a	•		(SGG) -	sement	000	27	26	27	•	(00) (00) (00)	(can)		0 -	18	.18	1. 1.	cept	e(DD) e(DDS)		-value	ø.	60.	. 88	(00)	3	MBtu MBtu	38 40
-	ing Load	۵	Wall	R-7	7	R-13	7	? ?	î		Slope	eated Ba		- 16 - 4	. 19	-10	-10 8ft	Shope Shope	_	Law	9:	110 41	-30 f	R-38 flr R-49 flr	Inte	Slope	;	Window U-	<u>-</u>	٩	3-Pan R-10	9	, L	3.06	-
	Cooling	ponent (KBtu)	(/sf)	•	69.	. 55	.46	.35	82.	. 20	31.89 6.727	(/ft) H		4.6	4.43	89.	3.93	000	7.70	(/sf) C	11	N 6	20	<u> </u>	695	280	D	sf fir)	- 07	07	ö	250	60	e Load =	Load
Two		(MBtu) (k		9.4			•	•	•	-1.00	(00) (008) -3			4 4 . 1		40	ო	cept -4 (DD) -4	_	Basement	28	ė,	9.00		cept	(00)		tion (/	6	99.	.	01ELF	ØBIELF	Bas Typica	Residua
Series		De De	n : 1 : e	ж о о	7	7	7	<u>ب</u>	۳ -	R - 60	Slope (Curve)	Slab		R-Ø	9 4	7	-10 4ft	Inter Slope	Curve	Unheated 6	9	-11 1	R-19 11r R-30 fir		Toter	Slope (DD)	9 \ 1 1	Infiltra	ELF Ach	9005 (41	. 0003 (.24	lope/.	rve/		
Siding		u) (n)	4	ດາ ເ	ກຕ	82	יט י	•	***		.37	ft)	•	.87		175	.87	93	547	sf)	.54	.08	.71	.61	500	38.6	487	/sf)	6	2.82	3.15 Ø.25	7	.183		
6		mponent (KBtu)	5	58	- F	- C	, ~	ഹ	4		5299 16.8	>	;	110	7.	8 0	4	3985	32.	٥						4720	12.	>	,	0 12 5 2		~	12		
Prototyp		elta Com (MBtu)		0,0	77	1.0	. ~	N	œ.		• (DD) • (DDS)	asement		4.	si d	-7.44	ે.	cept (00)	e		ĕ	6	-11:		-13.	e(DD)	•	U-value	•	9. E	-12.9 -16.2	•	(SQQ)	MBtu	MBtu
d Town	ing Load	۰.	Wal	R-0	-	R-11	1	۲,	က		Slope	eated B	 - - - -	ا روا	ان 4 ر	ر ا ا	1 2 2	, E S	5	Craw	9-8	-11 fl	-19 fl	R-38 flr	-49 fl		Su.	Window U	1	<u>م</u> ۵	3 - Pan	7	22	71.54	8.
. <u>.</u>	Heat	<i>م</i> بد	_	. m	м -	4 (1	o uc	ຸດ	9	o ø	2.9	Η C		~	N I	٠°	• •	144	=	÷.	o.	,	56	.		50	88	f1r) v		9,9	22		21	וו סיס	סדים
WYEC		Component (KBtu)	(/sf	32.7	12.6	ວນ ແ 4. ກ	מו כ	4	3.3	8.69 6.63	6032. -86.3	*		. 79	33	22°	. 4	-12.	71.1	<u>s</u>	6		 	. 7	Č	5296.	92.3	(/sf 1	;	14.	 	7	2.50	Base Log	۲°
		E.C.	•	ė.	2.0	9 6		7.5	17.6	-18.05	~6)		-7.2	-8.5	0.0	9 9	ept.	(\$00)	sasement	4	. 2	-10.8	7 7 7		(00) (00)		t:01		, Ø	-10.8	i i	JELF JELF	α · ·	Resid
Seattle WA		De It		6	-1	-11	6 C C	130	989	R-49	edo-	- 4e	0	9-	-5 2ft	4 t	-10 ZIC	-10 41t Inter	0 0 0 0 0	Unheated B	5	-11	R-19 fir	-36		Intercept Slope(DD)	Curve		Ach	(97.) [000.	. 0003 (. 56) . 0003 (. 33)	•	Slope/.0016 Curve/.0016		

		Component (KBtu)	(/sf) .75 .45 .36 .25 .25	210.32 -13.122 (/ft)	62 46 46 29 000 393	(/sf)	3.39 3.39 3.39 3.39 3.42 3.42 3.42	~ DDDD	-5.86
	ס	Deita Co (MBtu)		(DD) (DDS) sement	18 17 17 17 17 17 (DD) (DD)		.000 .07 .07 .07 .07 .07 .00 .00)	9	(DD) (DDS) Btu Btu Btu
	ooling Load	,	We	Sloper Curve Heated Bas	R-0 R-5 Aft R-5 Aft R-10 Aft R-10 Aft Inter Slope Curve	Crawl	R-6 R-11 flr R-19 flr R-30 flr R-38 flr R-49 flr Interc Slope(Curve(Window U-v 1-Pane 2-Pane 3-Pane R-10	Slope(DD) Curve(DD) 2.53 MBtu 1.22 MBtu .07 MBtu
	ŭ	mponent (KBtu)	(/sf) 1.96 86 63 47 47 26	453.70 -22.374 (/ft)	-2.46 -1.96 -1.62 -1.79 -1.29 850 -378.83	. (/sf)	03 18 24 28 38 38 34.64	/sf flr) .04 .03	125 104 104 =
O* _		elta Co (MBtu)		(\$00) (00)	23 22 28 21 19 (DD) -(DD)	Basement	18 05 01 .01 01 01 00 00 00	/) noi. .00 .00 .00.	ELF Bas Typica esidua
g Series		٥	C C C C C C C C C C C C C C C C C C C	Slope Curve Slab	R-6 R-5 2ft R-5 4ft R-10 2ft R-10 4ft Interc	Unheated E	R-0 R-11 fir R-19 fir R-3Ø fir Interd Slope(Curve(Infiltrat ELF Ach .0007(.57) .0005(.41) .0003(.24)	Slope/.0011 Curve/.0011
ype Siding		(KBtu)	(/sf) 28.88 13.18 16.87 16.87 7.15 3.91	1942.54 76.759 (/ft)	130.69 80.69 63.52 69.19 46.52 .000 342.38	(/sf)	18.28 .87 -1.81 -3.39 -3.75 -7.153 732.77	(/sf) 120.18 48.96 30.69 9.20	26.553
Prototyp	_	elta Co (MBtu)	6.44 6.47 6.47 6.47 6.47 6.47 6.86 6.47	(DD) 4 (DDS) sement	-7.05 -8.65 -9.06 -8.89 -9.57 (DD) 4 (DD) -		-18.45 -12.65 -13.08 -13.22 -13.24 -13.84 (DD) 4	. 00 -10.26 -12.89 -15.98	3 DDS) 3 Ctu tu tu tu tu
MApartment	ating Load	۵	W R R - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Slope Curve Heated Ba	R-6 R-5 Aft R-5 Bft R-10 Aft R-10 Bft Inter Slope Curve	Crawi	R-0 R-11 flr R-19 flr R-30 flr R-49 flr R-49 flr Slope	Window U 1-Pane 2-Pane 3-Pane R-10	Slope Curve (66.96 MB 18.54 MB 4.56 MB
WYEC	Дea	omponent (KBtu)	31.55 11.55 11.55 8.85 6.04 8.85 3.85 9.43 2.43 8.85	488.24 28.114 (/ft)	86.69 49.52 37.35 43.35 27.69 124.738 99.812	(/sf)	6.53 1.00 90 -2.12 -5.506 4664.08	(/sf flr) v 14.23 9.51 5.32	15.770 6.511 6 Load = 1 Load = 1 Load = 1
₩A		Delta Com (MBtu)	ing -11.75 -13.62 -15.31 -15.87 -16.64 -17.10	(00) (00s) -	-8.37 -9.48 -9.85 -9.67 -10.14 (cept (DD) -	Basement	-7.06 -10.37 -11.56 -12.24 (DD) (DD)	on -5.66 10.69	ELF ELF Basi Typica esidua
Seattle M		ن	0	Slope Curve Slab	100 24tt 100 24tt 100 24tt 100 24tt 100 20 20 20 20 20 20 20 20 20 20 20 20 2	Unheated	R-0 R-11 flr R-19 flr R-3Ø flr Interc Slope	Infiltrati ELF Ach .0007(.76) .0005(.56) .0003(.33)-	Slope/.0011 Curve/.001

۰	Cooling Load	a Component Delta Component tu) (KBtu) (MBtu) (KBtu)	.00 7.04 R-0 .00 3 38 2.89 R-7 -1.90 1	.40 2.23 R-11 -2.17 1.5	.39 R-19 -2.74 1.0 .05 R-27 -3.07 .7 .85 R-34 -3.27 .6 .67) 1544.34 Slope(DD) 809 5) -60.337 Curve(DDS) -28.	(/ft) Heated Basement $(/ft)$	-5.92 -7.51 R-Ø -3.3Ø 8.28 -5.9Ø -7.39 R-5 4ft -4.05 3.76 -5.82 -6.9Ø R-5 8ft -4.11 3.4Ø -5.89 -7.33 R-1Ø 4ft -4.25 2.55 -5.77 -6.6Ø R-1Ø 8ft -4.3Ø 1.69 pt -4.82 Intercept .0ØØ D) -61Ø.Ø1 Slope(DD) 16Ø.33 DS) 32.284 Curve(DDS) 1.0Ø5	ement (/sf) Crawi (/sf)	3.30 .89 R-0 .00 3.04 78 2.53 R-11 fir 1.07 3.73 10 2.97 R-19 fir 1.22 3.83 .33 3.25 R-30 fir 1.33 3.90 R-38 fir 1.35 3.91 R-49 fir 1.42 3.96 t 4.002 Intercept 4.043) -1020.56 Slope(DD) -185.43 S) 80.745 Curve(DDS) -2.153	n (/sf flr) Window U-value (/sf) .00 1.70 1-Pane .00 2.0975 1.22 2-Pane21 .95 1.50 .73 3-Pane27 .60 R-1035 .19	LF 2.435 Slope(DD) 82.23 LF .000 Curve(DDS)121	Base Load = 27.97 MBtu Typical Load = 10.70 MBtu esidual Load = -2.06 MBtu
Siding Series Two		nent Delta Btu) (MBti	eiling -0 -7	.87 R-11 .78 R-19	.74 .86 .70 R-30 R-38 R-49 R-60	1.60 Slope(DD .360 Curve(DD	(/ft) Slab	9.86 R-0 2.51 R-5 2ft 3.41 R-5 4ft 5.52 R-10 2ft 1.36 R-10 4ft 6.97 Slope(D 5.97 Slope(D	(/sf) Unheated Bas	5.10 R-0 -3. 1.34 R-11 flr 99 R-19 flr 2.41 R-30 flr 2.74 Intercept Slope(DD) 3.67 Intercept Slope(DD)	(/sf) Infiltratio ELF Ach 12.34 .0007(.48) 53.20 .0005(.34) 33.83 .0003(.20) -	9.24 Slope/.001E .325 Curve/.001E	⊢ &
One Story Prototype	sating Load	Delta Compon (MBtu) (KB	. 68 2 13.51 1	-11 -15.43 -13 -17.78	-19 -18.95 -27 -21.07 -34 -22.37	e(DD) 48: e(DDS) -8:	Heated Basement (,	R-0 R-5 4ft -14.53 55 R-5 8ft -16.04 4 R-10 8ft -15.69 4 R-10 8ft -18.04 3 Slope(DD) 314 Curve(DDS) -29	Craw! (R-0 R-11 ftr -21.19 1 R-19 ftr -24.77 R-30 ftr -26.98 -2 R-36 ftr -28.96 -3 R-49 ftr -28.90 -3 Intercept -5.3 Slope(DD) 4421 Curve(DDS) -65.) Window U-value (60 111 2-Pane -10.93 5 3-Pane -14.51 3 R-10 -18.72 1	Slope(DD) 473: Curve(DDS) -18	= 124.39 MBtu = 38.43 MBtu = 1.98 MBtu
Washington DC WYEC	⊕ ⊕	Delta Component (MBtu) (KBtu)	eiling (/sf -0 .00 25.6 -7 -23.74 10.2	-11 -27.53 7.7 -19 -30.93 5.5	R-22 -32.24 4.69 R-30 -33.99 3.55 R-38 -35.05 2.87 R-49 -35.98 2.26 R-60 -36.58 1.87	Slope(DD) 5170.37 Curve(DDS) -143.062	Slab (/ft)	R-0 R-5 2ft -20.11 18.89 R-5 4ft -21.23 12.15 R-10 2ft -20.84 14.50 R-10 4ft -22.40 5.10 Intercept -14.360 Slope(DD) 5745.95 Curve(DDS) -80.642	Unheated Basement (/sf)	R-0 R-11 flr -21.18 1.34 R-19 flr -24.2565 R-30 flr -26.22 -1.93 Intercept -5.364 Slope(DD) 4660.51 Curve(DDS) -377.503	Infiltration (/sf flr) ELF Ach .0007(.79) .00 14.43 .0005(.56) -6.50 10.21 .0003(.36)-12.88 6.07	Slope/.001ELF 19.935 Curve/.001ELF .974	Base Load : Typical Load : Residual Load :

		(KBtu)	(/sf) 2.76 1.36 1.10 .85 .72 .52	514.26 350 (/ft)	7.90 3.16 3.15 2.15 1.65 134.18	(/sf)	2.49 3.61 3.76 3.88 3.91 3.99 4.125 311.15	(/sf) -4.64 -4.15 -2.75 -1.10	495.89 12.125
	- n	Delta Co (MBtu)		(DD) (DDS) sement	-1.18 -1.36 -1.37 -1.41 -1.43 cept (DD) (DD)		.00 .67 .78 .83 .85 .85 .90 .90 (DD) –	. 00 . 07 . 27 . 51	(DDS) (DDS) Btu Btu
	ooling Load	_	₩ R-8 R-11 R-13 R-19 R-27	Slope Curve	-8 4ft -5 8ft -10 4ft -10 8ft Inter Slope Curve	rawl	-0 -11 fr -19 fr -38 fr -49 fr Inter Slope Curve	ndow U- 1-Pane 2-Pane 3-Pane R-10	Slope Curve 18.67 ME 12.26 ME 5.05 ME
	Cool			I	~ ~ ~ ~ ~	Ū	ىد بېد بېد بېد	1r) ₩ <u>:</u> 55 4	H II II
		omponent (KBtu)	(/sf) 6.75 6.75 2.56 1.89 1.29 1.09 83 .67	1174.17 -5.901 (/ft)	-16.68 -15.68 -14.85 -15.68 -14.18 -16.939 1071.16	t (/sf)	. 53 2.19 2.67 2.98 3.805 3.805 127.32 95.178	1.35 1.35 .93	1.708 .312 e Load Load Load
Q		, G	22.25.25.25.25.25.25.25.25.25.25.25.25.2		010010	еше	1.18 18 .29 .29 t		LF FBas ypica sidua
es T _w		Delta (MB)		Pe (DD) Ve (DDS) b	t	d Bas	-1 r r ercept ve(DD) ve(DDS)	64.84.6 0.0000000000000000000000000000000000	001E 001E T Re
Seri			- 0 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	SIO Cur	24 0 24 0 25 Int 0 0 0	eate	Int Sio	# * :::::::::::::::::::::::::::::::::::	lope/. urve/.
o,					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 F	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Inf. ELF. .00007.	Co
idin		<u>، د</u>	~@@~@~		04440 <i>0</i> 000		101010 0 0 0 0 0 0 0		
S ed/		(KBtu)	722.000.000.000.000.000.000.000.000.000.	189.6 12.47 (/ft	92.2 54.5 44.0 46.0 31.2 31.2 0010.5	(/sf)	15.55 2.55 2.55 78 -1.06 -1.88 -3.784 805.52	(/sf) 96.94 40.14 25.20 7.64	204.74 17.699
Prototype		ပိုက္ခ	. 60 66.64 8.664 9.35 9.35	S) 4 S) 4	5.64 7.15 7.57 7.57 7.59 8.68 t. 3		.000 7.800 9.006 9.97 9.97 t t t	. 66 8.18 8.33 2.86	(S)
P	9	Delt: (MB)	11111	e (DD) e (DDS) la semen	t -5. t -7. t -7. t -7. t -8. ercept Pe (DD)		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	e (DD) e (DDS) MBtu MBtu MBtu
To⊮n	g Loa		W X X 2 X X 2 X X X X X X X X X X X X X	Slop Curv	8 4 ft 8 A ft Interve	-	0889 0886 085 085 085 085 085 085 085 085 085 085	Jow U-Pane	Slop Curv .80
P . <u>.</u>	atin			T 0 w	88 - 88 - 88 - 88 - 88 - 88 - 88 - 88	Cra	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Wind Wind Wind Wind Wind	58 10
Ų	Ţ	ent tu)	sf) 711 . 229 . 31 . 38 . 78 . 78	.24 963 ft)	2 55 4 4 5 5 5 2 6 5 3 2 6 5 3	sf)	282 282 282 282 283 586	f1r) .88 .67	6866 687 687 687 687 687 687
WYE		ompon (KB)001 7001 7001 7001	4873 -61.	8 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1);	.3. -3. 3583	(/sf 12 8 8	7.4.
20		<u>.</u>	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	(\$00) (00)	-7.64 -8.55 -8.85 -8.75 -9.06 (DD)	sешел	-5.64 -8.36 -9.16 -9.72 -9.72 DS)	on	JELF JELF Base Typica Residua
		Delta (MBt		9 0	~ ~ ~ ~	d Ba	7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Ach Ach . 583 . 363	99.
Washington			0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S S S	0.0	heate	പരമ	Infiltr ELF Aci 0007(.8 0005(.5)	lope/ urve/
æ. ★					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	нщ <u>я</u>	្តិ

Cooling Load	Delta Component (MBtu) (KBtu)	Wall (/sf) R-0 .000 2.46 R-746 .99 R-1153 .78 R-1360 .56 R-2767 .34 R-3469 .26	Slope(DD) 297.48 Curve(DDS) 29.602 Heated Basement (/ft)	-6 4ft -1.04 8. -5 8ft -1.19 3. -10 4ft -1.23 2. -10 8ft -1.24 1. Intercept .0 Intercept .0 Slope(DD) 128.	R-Ø 2.14 R-11 flr .63 3.20 R-19 flr .74 3.37 R-38 flr .84 3.53 R-49 flr .89 3.62 Intercept 3.796 Slope(DD) -373.34 Curve(DDS) 10.134	r) Window U-value (/sf) 1-Pane .00 -3.89 2-Pane .05 -3.55 3-Pane .22 -2.35 R-10 .4294	Slope(DD) -425.32 Curve(DDS) 10.524 = 16.97 MBtu = 11.29 MBtu
Series T¥o	Delta Component (MBtu) (KBtu)	Ceiling R-0 R-0 R-7 -2.39 2.26 R-11 -2.77 1.62 R-19 -3.11 1.05 R-36 -3.22 87 R-38 -3.44 -49 R-49 -3.53 -3.53	Slope(DD) 918.63 Curve(DDS) 22.452 Slab (/ft)	2ft -1.77 -16. 4ft -1.71 -14. Ø 2ft -1.73 -14. Ø 4ft -1.69 -13. Intercept -9.6 Stope(DD) -1212. Curve(DDS) 57.0	Unheated Basement (/sf) R-0 R-11 flr19 1.83 R-19 flr .06 2.23 R-30 flr .21 2.49 Intercept 3.185 Slope(DD) -943.48 Curve(DDS) 78.376	Infiltration (/sf flu ELF Ach .0007(.48) .00 1.44 .0005(.34)47 1.05 .0003(.20)96 .64	Slope/.001ELF 2.208 Curve/.001ELF208 Base Load Typical Load Residual Load
MApartment Prototype Sidir eating Load	Delta Component (MBtu) (KBtu)	Wall R-0 R-0 R-7 R-7 R-11 R-11 R-11 R-13 R-13 R-15 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34	Slope(DD) 4076.50 Curve(DDS) 40.965 Heated Basement (/ft)	-6 .73 109. -5 4ft -8.10 64. -5 8ft -8.47 51. -10 4ft -8.41 53. -10 8ft -8.92 36. Intercept .0 Intercept .0	Crawl R-0 R-10 R-10 R-11 flr -8.04 3.30 R-19 flr -9.33 1.14 R-30 flr -10.2742 R-49 flr -10.78 -1.26 Intercept -3.223 Slope(DD) 3918.12 Curve(DDS) -6.356) Window U-value (/sf) 1-Pane .00 96.07 2-Pane -8.31 38.40 3-Pane -10.38 24.02 R-10 -12.81 7.11	Slope(DD) 2964.96 Curve(DDS) 25.537 = 55.40 MBtu = 14.55 MBtu
Washington DC WYEC	Delta Component (MBtu) (KBtu)	Ceiling (/sf) R-0 R-7 -9.65 9.92 R-11 -11.19 7.35 R-19 -12.57 F.04 R-22 -13.05 R-38 -14.07 R-49 -14.38 2.03 R-60 -14.58 1.69	Slope(DD) 4593.79 Curve(DDS) -35.121 Slab (/ft)	-8.39 54. t -9.13 29. t -9.33 22. t -9.26 25. t -9.54 16. ercept -2.1 pe(DD) 5257.	Notested Basement (/sf) R-0 R-11 flr -8.90 1.87 R-19 flr -9.66 .59 R-30 flr -10.1522 Intercept -2.508 Slope(DD) 3145.91 Curve(DDS) -309.562	Infiltration (/sf flr. ELF Ach .0007(.83) .00 12.69 .0005(.58) -4.92 8.60 .0003(.35) -9.38 4.88	Slope/.001ELF 14.854 Curve/.001ELF 4.688 Base Load : Typical Load : Residual Load :

Tables for Mass Walls and Window Solar Gain Measures

Section 3.B contain tables of insulation measures in mass walls and window solar gain measures for the one-story prototype building in 45 base locations. For each mass wall measure, the tables show the Δ load in MBtu, and the component load in kBtu normalized by ft² relative to the R-0 wood frame wall. Following the Δ and component loads, the tables give quadratic regression coefficients for the mass walls, with the linear coefficient listed as "Slope", the quadratic coefficient as "Curve", and the intercept relative to the wood-frame wall as "Intercept".

For window solar gain, the tables give first the Δ loads for 184.8 ft² of double and triple-pane windows of average orientation relative to single-pane due to changes in shading coefficients. These Δ loads should be added to the Δ loads for window U-values in Section 3.A to derive the net changes in building loads. Component loads are not shown since they will vary depending on the total amount of solar gain, as explained in Section 2.E. Following the Δ loads, the tables give the coefficients for each cardinal orientation (α), and a fifth coefficient for solar usability (β) based on Equation 11. The units for the α 's are kBtu/ft², the β 's are dimensionless. The intercepts from the regressions are not used.

Albuquerque NM One Story Prototype Mass and Window runs

20420.420.1	ricoodype mass and window runs
Heating Load	Cooling Load
Delta Component	Delta Component
(MBtu) (KBtu)	(MBtu) (KBtu)
95 lb Mass Wall	95 lb Mass Wall
R-O 3.57 20.81	R-0 -1.98 1.95
R-5 -10.95 7.88	R-5 -4.4423
R-10 -15.97 3.42	R-10 -5.1385
R-15 -18.11 1.51	R-15 -5.40 -1.09
R-30 -20.5061	R-30 -5.75 -1.40
Intercept973 Slope(DD) 3400.08	Intercept -1.229
Slope(DD) 3400.08	Slope(DD) 397.76
Curve(DDS) -3.063	Curve(DDS) 16.309
120 lb Mass Wall	120 lb Mass Wall
R-0 2.98 20.28	R-0 -2.59 1.41
R-5 -11.22 7.64	R-5 -4.7047
R-5 -11.22 7.64 R-10 -16.15 3.26 R-15 -18.27 1.37	R-10 -5.36 -1.05
R-15 -18.27 1.37	R-15 -5.61 -1.28
R-30 -20.6474	R-30 -5.93 -1.56
Intercept -1.071	Intercept -1.397
Slope(DD) 3373.34	Intercept -1.397 Slope(DD) 400.30
Intercept -1.071 Slope(DD) 3373.34 Curve(DDS) -7.793	Curve(DDS) 8.523
Log Mass Wall	log Mass Wall
4in -5.92 12.36	Log Mass Wall 4in -1 81 2 11
6in -11.65 7.26	4in -1.81 2.11 6in -3.59 .52 8in -4.1901 10in -4.3314 12in -4.3616
8in -14.48 4.74	8in -4.1901
10in -16.05 3.35	10in -4.3314
12in -17.06 2.45	12in -4.3616
Intercept .357 Slope(DD) 2419.12	Intercept .918
Slope(DD) 2419.12	Slope(DD) -898.60
Curve(DDS) 250.334	Intercept .918 Slope(DD) -898.60 Curve(DDS) 316.032
Window Solar Gain	
Deltas for Average Window O	rientations (MBtu)
1-Pane .00	1-Pane .00
2-Pane .83	2-Pane 67
3-Pane 1.55	3-Pane -1.22
Alphas (KB	tu/sf) Beta Intercept
North East	South West
•	-127.970 -64.114 .013047058493
Cooling 19.923 41.398	30.058 46.376 .013036058951

Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
R-O -1.25 14.13 R-5 -12.72 3.93 R-10 -16.72 .37 R-15 -18.44 -1.16 R-30 -20.47 -2.97 Intercept -3.141	95 lb Mass Wall R-0 -4.3565 R-5 -6.56 -2.62 R-10 -7.25 -3.23 R-15 -7.52 -3.47 R-30 -7.89 -3.80 Intercept -3.719 Slope(DD) 444.17 Curve(DDS) 6.287
R-10 -16.86 .24 R-15 -18.56 -1.27 R-30 -20.57 -3.06	120 lb Mass Wall R-0 -4.79 -1.04 R-5 -6.86 -2.88 R-10 -7.46 -3.42 R-15 -7.71 -3.64 R-30 -8.07 -3.96 Intercept -3.834 Slope(DD) 397.94 Curve(DDS) 7.285
Log Mass Wall 4in -8.96 7.27 6in -13.31 3.40 8in -15.53 1.43 10in -16.81 .29 12in -17.6546 Intercept -2.315 Slope(DD) 2258.23 Curve(DDS) 129.145	Log Mass Wall 4in -4.5482 6in -5.90 -2.03 8in -6.52 -2.58 10in -6.75 -2.79 12in -6.85 -2.87 Intercept -2.741 Slope(DD) -78.25 Curve(DDS) 156.564
Window Solar Gain	
Deltas for Average Window Oriental 1-Pane .00 2-Pane .57 3-Pane 1.08	tions (MBtu) 1-Pane .00 2-Pane73 3-Pane -1.33
Alphas (KBtu/sf) North East South Heating -30.880 -50.604 -77.43 Cooling 30.841 49.814 42.05	35 -46.923 .018499073908

Birmingham AL One Story Prototype Mass and Window runs
Heating Load
Cooling Load

Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-0 2.55 14.86 R-5 -7.49 5.93 R-10 -11.04 2.77 R-15 -12.56 1.41 R-30 -14.3921 Intercept496 Slope(DD) 2520.83 Curve(DDS) -19.197	95 b Mass Wall R-070 3.41 R-5 -3.78 .67 R-10 -4.7923 R-15 -5.1959 R-30 -5.74 -1.08 Intercept -1.064 Slope(DD) 680.00 Curve(DDS) 2.898
120 lb Mass Wall R-0 2.18 14.53 R-5 -7.66 5.78 R-10 -11.16 2.66 R-15 -12.66 1.33 R-30 -14.4829 Intercept559 Slope(DD) 2503.51 Curve(DDS) -22.049	120 lb Mass Wall R-0 -1.07 3.08 R-5 -4.02 .45 R-10 -4.9941 R-15 -5.4279 R-30 -5.98 -1.29 Intercept -1.288 Slope(DD) 704.31 Curve(DDS) -2.655
Log Mass Wall 4in -4.09 8.95 6in -8.04 5.44 8in -10.01 3.68 10in -11.14 2.68 12in -11.87 2.03 Intercept .415 Slope(DD) 1863.08 Curve(DDS) 143.745	Log Mass Wall 4in -1.58 2.62 6in -3.18 1.20 8in -3.90 .56 10in -4.22 .28 12in -4.37 .14 Intercept .142 Slope(DD) 73.13 Curve(DDS) 158.678
Window Solar Gain	
Deltas for Average Window 1-Pane .00 2-Pane .55 3-Pane 1.04	Orientations (MBtu) 1-Pane .00 2-Pane86 3-Pane -1.57
Alphas (North Eas Heating -30.264 -57.61 Cooling 37.149 73.28	t South West 3 -74.012 -39.414 .019566010262

Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-0 7.60 48.57 R-5 -22.35 21.92 R-10 -34.23 11.35 R-15 -39.40 6.75 R-30 -45.87 .99 Intercept479 Slope(DD) 9202.32 Curve(DDS) -219.660	95 lb Mass Wall R-0 -1.76 .36 R-5 -3.0075 R-10 -3.2597 R-15 -3.34 -1.05 R-30 -3.44 -1.14 Intercept961 Slope(DD) 74.53 Curve(DDS) 20.372
120 lb Mass Wall R-0 7.20 48.22 R-5 -22.56 21.73 R-10 -34.38 11.21 R-15 -39.54 6.62 R-30 -45.98 .89 Intercept557 Slope(DD) 9174.09 Curve(DDS) -221.212	120 lb Mass Wall R-0 -2.2811 R-5 -3.2698 R-10 -3.44 -1.14 R-15 -3.51 -1.20 R-30 -3.64 -1.32 Intercept -1.123
Log Mass Wall 4in -13.60 29.71 6in -25.06 19.51 8in -31.28 13.97 10in -35.10 10.57 12in -37.70 8.26 Intercept 1.008 Slope(DD) 8129.08 Curve(DDS) 25.402	Log Mass Wall 4in -1.19 .86 6in -2.2508 8in -2.5837 10in -2.6241 12in -2.6039 Intercept .452 Slope(DD) -737.40 Curve(DDS) 217.752
Window Solar Gain	
Deltas for Average Window 1-Pane .00 2-Pane 1.28 3-Pane 2.37	Orientations (MBtu) 1-Pane 2-Pane 3-Pane76
Alphas (North Eas Heating -49.936 -95.54 Cooling 7.328 14.58	t South West 8 -162.236 -85.817 .006586252503

Boise ID One Story Prototype Mass and Window runs

Heating Load	Cooling Load	
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)	
95 lb Mass Wall R-0 7.03 33.76 R-5 -15.29 13.90 R-10 -23.25 6.81 R-15 -26.68 3.76 R-30 -30.82 .08 Intercept684 Slope(DD) 5715.33 Curve(DDS) -53.571	R-5 -3.8258 R-10 -4.32 -1.03 R-15 -4.50 -1.19 R-30 -4.70 -1.36 Intercept -1.200	
120 lb Mass Wall R-0 6.51 33.30 R-5 -15.52 13.69 R-10 -23.43 6.65 R-15 -26.83 3.63 R-30 -30.9403 Intercept776 Slope(DD) 5692.28 Curve(DDS) -57.676	Curve(DDS) 17.437	
Log Mass Wall 4in -8.54 19.90 6in -16.87 12.49 8in -21.12 8.71 10in -23.66 6.45 12in -25.35 4.94 Intercept .781 Slope(DD) 4683.76 Curve(DDS) 192.445 Window Solar Gain	Log Mass Wall 4in -1.54 1.45 6in -2.95 .19 8in -3.4525 10in -3.5635 12in -3.5635 Intercept .503 Slope(DD) -732.26 Curve(DDS) 254.814	
Deltas for Average Wi 1-Pane .00 2-Pane 1.08 3-Pane 2.02	ndow Orientations (MBtu) 1-Pane .00 2-Pane54 3-Pane97	
North Heating -50.481 -8	as (KBtu/sf) Beta East South West 9.441 -152.201 -83.052 .009550 4.945 23.671 32.459 .044875	Intercept159518034589

One Story Prototype Mass and Window runs

Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) <u>(</u> KBtu)
95 lb Mass Wall R-0 8.65 36.22 R-5 -14.79 15.36 R-10 -23.16 7.91 R-15 -26.77 4.70 R-30 -31.17 .78 Intercept078 Slope(DD) 6042.90 Curve(DDS) -60.464	95 lb Mass Wall R-0 -1.13 47 R-5 -2.2351 R-10 -2.5176 R-15 -2.6185 R-30 -2.7597 Intercept892 Slope(DD) 139.33 Curve(DDS) 10.996
120 b Mass Wall R-0	120 lb Mass Wall R-0 -1.52 .12 R-5 -2.4571 R-10 -2.6992 R-15 -2.78 -1.00 R-30 -2.90 -1.11 Intercept -1.015 Slope(DD) 124.22 Curve(DDS) 8.671
Log Mass Wall 4in -8.50 20.96 6in -16.70 13.66 8in -21.08 9.76 10in -23.81 7.33 12in -25.66 5.69 Intercept .462 Slope(DD) 5711.69 Curve(DDS) 30.934	Log Mass Wall 4in78 .78 6in -1.55 .09 8in -1.9123 10in -2.0132 12in -2.0535 Intercept216 Slope(DD) -135.91 Curve(DDS) 102.936
Window Solar Gain Deltas for Average Window Orienta 1-Pane .00	1-Pane .00
2-Pane .98 3-Pane 1.82	2-Pane 44 3-Pane 80
Alphas (KBtu/sf) North East South Heating -43.297 -72.903 -121.59 Cooling 13.035 21.663 20.10	98 -69.021 .008890098387

Brownsville TX One Story Prototype Mass and Window runs

		33. 7 1 1 0 0 0	oype mass	and window	runs
Не	ating Load		Со	oling Load	
Delta	Component		Dolto	C	
(MBt	u) (KBtu)			Component u) (KBtu)	
(-, ()		(MDC	u) (NDCu)	
95 lb Ma:	ss Wall		95 lb Ma	ss Wall	
R-0 -	.12 3.17 .00 .61 .8515 .2147 .5274		R-0	.55 5 55	
R-5 -3	.00 .61		R-5 -3	.55 5.55 .94 1.55	
R-10 -3	.8515		R-10 -5	.59 .08	
R-15 -4	.2147		R-15 -6	.2450	
R-30 -4	.5274		R-30 -7	.01 -1.18	
Intercept	710 461.04		Intercept	-1.391	
Slope(DD)	461.04			1110.99	
Curve(DDS)	20.259		Curve(DDS)	-6.258	
120 lb Mas	W-11				
D_O ID Mas	SS Wall		120 lb Mas		
R-0 R-5 -3. R-10 -3.	14 2.89		R-0	.36 5.38	
N-3 -3. P_10 3	.14 .48		R-5 -4	.17 1.35	
R-15 -4.	9025		R-10 -5	.7809	
R-30 -4.	6081		K-15 -6	.4770	
Intercept	772		R-30 -7		
Slope (DD)	773 451.18 17.241		Intercept	-1.611	
Curve (DDS)	17 0/1		STope (DDC)	1124.18	
cui ve (DDS)	17.241		Curve(DDS)	-7.138	
Log Mas	s Wall	•	Log Mas	s Wall	
4in −1.	51 1.93		4in -1. 6in -3. 8in -4. 10in -5.	87 3.39	
6in -2.	87 .72		6in -3.	47 1.97	
8in -3.	47 .19		8in -4.	47 1.08	
10in -3.	7607		10in -5.	06 .55	
12in -3.			12111 -0.	40 .Z1	
Intercept	408		Intercept	-1.315	
Slope(DD)	210.06		Slope(DD)	1461.57	
Curve(DDS)	111.361		Intercept Slope(DD) Curve(DDS)	-39.888	
Window Sola	ar Gain				
Deltas for	Average Wind	dow Orients	tions (MR+	1	
1-Pane	.00		1-Pane	.00	
2-Pane	.09		2-Pane	-1.42	
3-Pane	.17		3-Pane	-2.60	
	A 1 t	//Di / 65			
		s (KBtu/sf) East Sout	.L W	Beta	Intercept
Heating	•	ast Sout 407 -9.85			024475
Cooling	60.084 105.				034475
	55.55 4 105.	300 01.14	28 101,020	001616	033090

		, 4113
Heating Load	Cooling Load	
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)	
95 lb Mass Wall R-0 9.67 41.19 R-5 -16.84 17.60 R-10 -26.43 9.07 R-15 -30.55 5.40 R-30 -35.60 .91 Intercept121 Slope(DD) 6965.89 Curve(DDS) -80.873	95 b Mass Wall R-098 .22 R-5 -1.7445 R-10 -1.9261 R-15 -1.9968 R-30 -2.0876 Intercept683 Slope(DD) 86.16 Curve(DDS) 8.529	
120 lb Mass Wall R-0 9.37 40.93 R-5 -17.01 17.45 R-10 -26.55 8.96 R-15 -30.66 5.30 R-30 -35.69 .83 Intercept180 Slope(DD) 6940.05 Curve(DDS) -81.352	120 lb Mass Wall R-0 -1.2502 R-5 -1.9060 R-10 -2.0573 R-15 -2.1178 R-30 -2.1885 Intercept760 Slope(DD) 67.77 Curve(DDS) 7.882	
Log Mass Wall 4in -9.70 23.95 6in -19.10 15.59 8in -24.11 11.13 10in -27.21 8.37 12in -29.31 6.50 Intercept .642 Slope(DD) 6427.48 Curve(DDS) 53.210	Log Mass Wall 4in59 .57 6in -1.2401 8in -1.4721 10in -1.5226 12in -1.5428 Intercept .056 Slope(DD) -301.46 Curve(DDS) 111.759	
Window Solar Gain Deltas for Average Wi 1-Pane .00 2-Pane .89 3-Pane 1.65	ndow Orientations (MBtu) 1-Pane .00 2-Pane32 3-Pane57	
North Heating -46.267 -69	as (KBtu/sf) Beta East South West 9.270 -99.603 -65.537 .009967 9.563 8.931 10.775 .368728	Intercept109060077150

Burlington VT One Story Prototype Mass and Window runs

one Story	rrototype Mass and Window runs
Heating Load	Cooling Load
Delta Component	Delta Component
(MBtu) (KBtu)	(MBtu) (KBtu)
95 lb Mass Wall	95 lb Mass Wall
R-0 10.53 45.34	R-0 -1.14 .22
R-5 -18.58 19.44	K-5 -1.8743
R-10 -29.16 10.02	R-10 -2.0659
R-15 -33.73 5.96	R-10 -2.0659 R-15 -2.1366 R-30 -2.2576
R-30 -39.31 .99	R-30 -2.2576
Intercept169 Slope(DD) 7726.31	Intercept684 Slope(DD) 112.61
Curve(DDS) -96.298	Slope(DD) 112.61
cui ve(DD3) -90.298	Curve(DDS) 5.208
120 lb Mass Wall	120 lb Mass Wall
R-0 10.17 45.02	R-0 -1 43 - 02
R-5 -18.77 19.27	R-5 -2.0357 R-10 -2.1971 R-15 -2.2677
R-10 -29.31 9.89	R-10 -2.1971
R-15 -33.85 5.85	R-15 -2.2677
R-30 -39.42 .89	R-30 -2.3182
Intercept247 Slope(DD) 7702.96	Intercept728
Curve(DDS) -97.826	Slope(DD) 75.47 Curve(DDS) 6.204
97.020	Curve(DDS) 6.204
Log Mass Wall	Log Mass Wall
4in -10.63 26.51	4in71 .61
6in -21.01 17.27	6in -1.37 .02
8in -26.56 12.34	8in -1.6220
10in -29.99 9.28	10in -1.6624
12in -32.30 7.23	12in -1.6826
Intercept .725 Slope(DD) 7115 70	Intercept .101
Slope(DD) 7115.79 Curve(DDS) 56.936	Slope(DD) -313.41 Curve(DDS) 115.280
20.000	Cui ve (DDS) 115.280
Window Solar Gain	
Deltas for Average Window O	rientations (MBtu)
1-Pane .00	1-Pane .00
2-Pane 1.13	2-Pane29
3-Pane 2.10	3-Pane51
Alphas (KB	cu/sf) Beta Intercept
North East	South West
	-139.473 -78.363 .007492184208
Cooling 4.186 7.359	6.876 8.804 .629224083819

Charleston SC One Story Prototype Mass and Window runs

	y sypo mass and mindow fulls
Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-0 1.63 12.35 R-5 -7.56 4.17 R-10 -10.75 1.34 R-15 -12.12 .12 R-30 -13.59 -1.19 Intercept -1.461 Slope(DD) 2145.01 Curve(DDS)982	95 b Mass Wall R-098 2.60 R-5 -4.3036 R-10 -5.40 -1.33 R-15 -5.86 -1.74 R-30 -6.22 -2.06 Intercept -2.152 Slope(DD) 626.03 Curve(DDS) 14.810
120 b Mass Wall R-0	120 lb Mass Wall R-0 -1.48 2.15 R-5 -4.5961 R-10 -5.69 -1.59 R-15 -6.11 -1.97 R-30 -6.45 -2.27 Intercept -2.356 Slope(DD) 616.13 Curve(DDS) 11.442
Log Mass Wall 4in -4.02 7.32 6in -7.83 3.93 8in -9.67 2.30 10in -10.67 1.41 12in -11.32 .83 Intercept435 Slope(DD) 1420.43 Curve(DDS) 193.019	Log Mass Wall 4in -1.86 1.82 6in -3.49 .37 8in -4.2733 10in -4.6466 12in -4.8584 Intercept -1.228 Slope(DD) 336.34 Curve(DDS) 123.753
Window Solar Gain	
Deltas for Average Williams 1-Pane .00 2-Pane .40 3-Pane .75	ndow Orientations (MBtu) 1-Pane .00 2-Pane -1.08 3-Pane -1.99
North Heating -23.186 -39	Beta Intercept East South West 0.311 -63.359 -34.691 .028733048477 0.092 68.165 70.553000637012741

One Story Prototype Mass and Window runs

eyenne wi	Story Prototype	Mass and Window	runs
Heating Load		Cooling Load	
Delta Component (MBtu) (KBtu)		Delta Component (MBtu) (KBtu)	
95 lb Mass Wall R-0 9.28 43.79 R-5 -19.46 18.22 R-10 -29.71 9.09 R-15 -34.11 5.18 R-30 -39.47 .41 Intercept550 Slope(DD) 7364.60 Curve(DDS) -69.619	95 R-0 R-5 R-10 R-19 R-30 Inte Slop Curv	The Mass Wall -1.5523 -2.1374 0 -2.2182 6 -2.2484 0 -2.2686 ercept716 pe(DD) -7.81 ve(DDS) 13.617	
120 lb Mass Wall R-0 8.70 43.28 R-5 -19.72 17.98 R-10 -29.92 8.91 R-15 -34.29 5.02 R-30 -39.61 .28 Intercept662 Slope(DD) 7339.98 Curve(DDS) -74.163	120 R-0 R-5 R-10 R-15 R-30 Inte	1b Mass Wall -1.8852 -2.2787 0 -2.3392 6 -2.3594 0 -2.3594 ercept799 0 (DD) -9.86 0 (DDS) 9.718	
Log Mass Wall 4in -11.00 25.74 6in -21.53 16.37 8in -27.00 11.51 10in -30.28 8.59 12in -32.47 6.64 Intercept 1.024 Slope(DD) 6289.74 Curve(DDS) 191.654	4in 6in 8in 10in 12in Inte Slop	Mass Wall87 .38 -1.5926 -1.7541 -1.7440 -1.7036 ercept .446 e(DD) -707.48 e(DDS) 176.345	
Window Solar Gain			
Deltas for Average W 1-Pane .00 2-Pane 1.56 3-Pane 2.91	1-P 2-P	(MBtu) ane .00 ane30 ane53	
North	has (KBtu/sf) East South 24.361 -215.669 -1 4.976 4.187	Beta West 16.245 .006116 5.280 2.138813	

Chicago IL

One Story Prototype Mass and Window runs

ricago IL Une	Story Prototype	Mass and Window	runs
Heating Load		Cooling Load	I
Delta Component		D 11 0	
(MBtu) (KBtu)		Delta Component (MBtu) (KBtu)	
95 lb Mass Wall	95	lb Mass Wall	
R-0 8.72 36.99	R_() -1.47 1.02	•
R-5 -15.37 15.55	R_!	-1.47 1.02 5 -3.1951	
R-10 -23.98 7.89	Ř-1	10 -3.6390	· 1
R-15 -27.67 4.61	R-1	5 -3.80 -1.05	
R-30 -32.17 .60		30 -4.03 -1.26	
Intercept282	Int	ercept -1.139	ı
Slope(DD) 6187.95	Sid	pe(DD) 234.83	
Curve(DDS) -59.731	Cur	ppe(DD) 234.83 ve(DDS) 15.464	
120 lb Mass Wall	120) lb Mass Wall	
R-0 8.39 36.70 R-5 -15.56 15.38 R-10 -24.12 7.77 R-15 -27.80 4.49	R-C	-1.96 .58	
R-5 -15.56 15.38	R-5	-3.4877	
R-10 -24.12 7.77	R-1	0 -3.87 -1.12	
R-15 -27.80 4.49	R-1	5 -4.03 -1.26	
11-00 -02.29 .00	K-3	0 -4.24 -1.45	
Intercept370 Slope(DD) 6169.21 Curve(DDS) -61.173	Int	ercept -1.313	
Slope(DD) 6169.21	Slo	pe(DD) 218.78	
Curve(DDS) -61.173	Cur	ve(DDS) 12.519	
Log Mass Wall .	Lo	g Mass Wall	
4in -8.76 21.44	4 i	n -1.22 1.24 n -2.39 .20 n -2.8622 n -3.0236 n -3.0841	
6in -17.28 13.85	6 i	n -2.39 .20	
8in -21.83 9.80	8 i	n -2.8622	
10in -24.64 7.30	10 i	n -3.0236	
12in -26.54 5.61	12 i	n -3.0841	
Intercept .254	Int	ercept101	
Slope(DD) 5830.35	Slo	pe(DD) -274.04	
Curve(DDS) 47.968	Cur	ercept101 pe(DD) -274.04 ve(DDS) 163.176	
Window Solar Gain			
Deltas for Average W	indow Orientation	s (MBtu)	
1-Pane .00		Pane .00	
2-Pane 1.04		Pane57	
3-Pane 1.94	3-	Pane -1.04	
•	nas (KBtu/sf)	Beta	Intercept
North	East South	West	•
		-69.295 .008024	
Cooling 17.544 3	31.802 28.050	34.602 .021287	7090338
			•

-205-Cincinnati OH One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall 7.20 31.19 -13.13 13.10 -20.43 6.60 R-0 R-O -1.65 1.14 R-5 R-5 -3.43 -.44 R-10 -20.43 6.60 R-10 -3.88 -.84 R-15 -23.56 3.82 R-15 -4.07 -1.01 R-30 -27.34 .45 R-30 -4.34 -1.25 Intercept -.305 Intercept -1.109 Slope(DD) 5240.57 Curve(DDS) -51.925 Slope(DD) 268.34 Curve(DDS) 13.299 120 lb Mass Wall 120 lb Mass Wall 6.91 30.93 -13.27 12.97 R-O R-0 -2.18 .67 R-5 R-5 -3.71 -.69 -4.12 -1.06 R-10 -20.53 R-10 6.51 R-15 -23.65 R-30 -27.42 3.74 R-15 -4.29 -1.21 .38 R-30 -4.52 -1.41 Intercept -.365 Intercept -1.260 5228.36 Slope(DD) Slope(DD) 246.03 Curve(DDS) -54.154 Curve (DDS) 10.080 Mass Wall -7.51 18.10 Log Log Mass Wall 4in -1.31 1.45 4in 6in -14.77 11.64 . 30 6in -2.60 8in -18.60 8.23 8in -3.09 10in -20.96 10 i n 6.13 -3.20 -.24 12in -22.55 4.71 -.26 12 i n -3.23 Intercept .358 Intercept .386 4781.17 Slope(DD) -555.20 Slope(DD) Curve(DDS) 67.164 Curve(DDS) 216.966

Window Solar Gain

 Deltas for Average Window Orientations (MBtu)

 1-Pane
 .00

 2-Pane
 .78

 3-Pane
 1.45

 1-Pane
 .00

 2-Pane
 -.59

 3-Pane
 1.45

Alphas (KBtu/sf) Beta Intercept
North East South West
Heating -37.151 -58.246 -99.364 -54.128 .011555 -.075737
Cooling 20.686 35.141 30.700 36.795 .012903 -.062128

Denver CO One Story Prototype Mass and Window runs

Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-0 6.45 34.08 R-5 -16.30 13.84 R-10 -29.33 2.24 R-15 -27.81 3.60 R-30 -31.9711 Intercept807 Slope(DD) 4815.36 Curve(DDS) 87.283	95 lb Mass Wall R-0 -2.73 .21 R-5 -4.18 -1.09 R-1083 1.90 R-15 -4.57 -1.43 R-30 -4.68 -1.53 Intercept -1.251 Slope(DD) 749.57 Curve(DDS) -72.467
120 lb Mass Wall R-0 5.75 33.46 R-5 -16.60 13.57 R-10 -24.56 6.49 R-15 -28.00 3.43 R-30 -32.1224 Intercept896 Slope(DD) 5706.74 Curve(DDS) -52.001	R-10 -4.70 -1.55 R-15 -4.79 -1.63 R-30 -4.90 -1.73 Intercept -1.455 Slope(DD) 80.72
Log Mass Wall 4in -8.98 20.35 6in -17.70 12.59 8in -22.10 8.68 10in -24.65 6.41 12in -26.33 4.91 Intercept 1.051 Slope(DD) 4427.88 Curve(DDS) 271.532	4in -1.74 1.09
Window Solar Gain	
Deltas for Average Wi 1-Pane .00 2-Pane 1.29 3-Pane 2.42	ndow Orientations (MBtu) 1-Pane .00 2-Pane51 3-Pane92
North Heating -50.000 -11	as (KBtu/sf) Beta Intercept East South West 2.636 -195.523 -98.823 .008103104505 1.240 17.380 23.263 .106055108635

El Paso TX One Story Prototype Mass and Window runs

Heating Load	Cooling Load	
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)	
95 lb Mass Wall R-0 1.61 12.17 R-5 -7.62 3.95 R-10 -10.75 1.17 R-15 -12.0802 R-30 -13.39 -1.18 Intercept -1.397 Slope(DD) 1989.41 Curve(DDS) 15.602	95 lb Mass Wall R-051 4.29 R-5 -4.19 1.02 R-10 -5.4208 R-15 -5.9555 R-30 -6.60 -1.13 Intercept -1.158 Slope(DD) 856.65 Curve(DDS)769	
120 lb Mass Wall R-0 1.13 11.74 R-5 -7.82 3.77 R-10 -10.90 1.03 R-15 -12.2113 R-30 -13.52 -1.30 Intercept -1.505 Slope(DD) 1989.01 Curve(DDS) 9.322	120 lb Mass Wall R-091 3.94 R-5 -4.45 .79 R-10 -5.6427 R-15 -6.1472 R-30 -6.77 -1.28 Intercept -1.284 Slope(DD) 823.39 Curve(DDS)633	·
Log Mass Wall 4in -4.09 7.09 6in -7.93 3.68 8in -9.70 2.10 10in -10.64 1.26 12in -11.24 .73 Intercept148 Slope(DD) 1077.01 Curve(DDS) 244.600	Log Mass Wall 4in -1.97 2.99 6in -3.70 1.45 8in -4.44 .80 10in -4.84 .44 12in -5.01 .29 Intercept .231 Slope(DD) 176.14 Curve(DDS) 155.328	en e
Window Solar Gain Deltas for Average Window 1-Pane .00 2-Pane .51 3-Pane .97	ndow Orientations (MBtu) 1-Pane .00 2-Pane90 3-Pane -1.66	
Alph North Heating -26.763 -5	Beta East South West 66.073 -86.146 -46.612 .022735 62.588 44.411 65.974 .003441	Intercept141425017241

ort Worth TX One Stor	y Prototype Mass and Window runs
Heating Load	Cooling Load
Delta Component	Delta Component
(MBtu) (KBtu)	(MBtu) (KBtu)
95 lb Mass Wall	95 lb Mass Wall
R-0 2.57 13.76	R-0 .51 4.96
R-5 -7.15 5.11	R-5 -3.28 1.58 R-10 -4.63 .38 R-15 -5.2113
R-10 -10.50 2.13	R-10 -4.63 .38
R-15 -11.91 .88 R-30 -13.4953	R-15 -5.2113
	R-30 -5.9075
Intercept789	Intercept895
Slope(DD) 2243.59 Curve(DDS) 1.204	Siope(DD) 960.55
Curve(DDS) 1.204	Curve(DDS) -8.064
120 lb Mass Wall	120 lb Mass Wall
R-0 2.19 13.43	R-0 .27 4.74
R-5 -7.35 4.94	R-5 -3.49 1.40
R-10 -10.63 2.02	R-5 -3.49 1.40 R-10 -4.84 .19
R-15 -12.03 .77 R-30 -13.6063	R-15 -5.4030
R-30 -13.6063	R-30 -6.1294
Intercept863	Intercept -1.087
Slope(DD) 2220.20	Slope(DD) 967.92
Curve(DDS)778	Curve(DDS) -9.546
Log Mass Wall	Log Mass Wall
4in -3.86 8.04	4in -1.53 3.14
6in -7.59 4.72	6in -2.96 1.87
8in -9.46 3.06	4in -1.53 3.14 6in -2.96 1.87 8in -3.80 1.12
10in -10.53 2.11 12in -11.22 1.49	10in -4.28 .69
12in -11.22 1.49	12in -4.58 .43
Intercept109	Intercept627
Slope(DD) 1778.18 Curve(DDS) 133.331	Slope(DD) 1045.43
Curve(DDS) 133.331	Curve(DDS) 1.657
Window Solar Gain	•
Deltas for Average Window	Orientations (MRtu)
1-Pane .00	1-Pane .00
2-Pane .46	2-Pane88
3-Page 86	3-Page 1.60

3-Pane

Alphas (KBtu/sf)
North East South West
-23.915 -40.238 -66.500 -37.520
34.790 60.086 48.659 66.413

-1.62

-66.500 -37.520 .023757 -.039180 48.659 66.413 -.000001 -.006814

Beta

Intercept

. 86

3-Pane

Heating

Cooling

	y wasana mass and mindow	runs
Heating Load	Cooling Load	
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)	
95 b Mass Wall R-0 1.32 13.92 R-5 -8.79 4.93 R-10 -12.22 1.88 R-15 -13.69 .57 R-30 -15.3288 Intercept -1.025 Slope(DD) 2300.44 Curve(DDS) 4.195	95 b Mass Wall R-0 -2.35 3.74 R-5 -6.13 .38 R-10 -7.3167 R-15 -7.76 -1.07 R-30 -8.35 -1.60 Intercept -1.407 Slope(DD) 726.94 Curve(DDS) 14.203	
120 lb Mass Wall R-0 .66 13.34 R-5 -9.07 4.68 R-10 -12.42 1.70 R-15 -13.85 .42 R-30 -15.47 -1.02 Intercept -1.134 Slope(DD) 2278.97 Curve(DDS) -2.286	120 lb Mass Wall R-0 -3.15 3.03 R-5 -6.6004 R-10 -7.6295 R-15 -8.04 -1.32 R-30 -8.59 -1.81 Intercept -1.550 Slope(DD) 647.27 Curve(DDS) 14.088	
Log Mass Wall 4in -4.62 8.64 6in -9.04 4.71 8in -11.07 2.90 10in -12.12 1.96 12in -12.77 1.39 Intercept .603 Slope(DD) 1080.35 Curve(DDS) 305.596	Log Mass Wall 4in -2.70 3.43 6in -5.15 1.25 8in -6.09 .41 10in -6.36 .17 12in -6.44 .10 Intercept 1.215 Slope(DD) -859.40 Curve(DDS) 383.050	
Window Solar Gain		
Deltas for Average Win 1-Pane .00 2-Pane .50 3-Pane .95	dow Orientations (MBtu) 1-Pane .00 2-Pane87 3-Pane -1.60	
North Heating -26.710 -43	s (KBtu/sf) Beta East South West .924 -73.966 -42.690 .021732 .789 45.688 63.406 .006371	Intercept089236032326

Great Falls MT One Story Prototype Mass and Window runs

ole Story	rrototype Mass and Window runs
Heating Load	Cooling Load
Delta Component	Dalka Camana
(MBtu) (KBtu)	Delta Component
(11500)	(MBtu) (KBtu)
95 lb Mass Wall	OF 11 44 W 14
R-0 7.85 44.01	95 lb Mass Wall
R-5 -19.95 19.27	R-0 -1.4904
R-10 -30.58 9.81	R-5 -2.2471
R-15 -35.19 5.71	R-10 -2.3883
R-30 -40.8864	R-15 -2.4387
	R-10 -2.3883 R-15 -2.4387 R-30 -2.4892
Intercept591	Intercept786
Slope(DD) 8026.11	Slope(DD) 30.25
Curve(DDS) -154.120	Intercept786 Slope(DD) 30.25 Curve(DDS) 13.760
	·
120 lb Mass Wall	120 lb Mass Wall
R-0 7.38 43.59	R-0 -1 85 - 36
R-5 -20.20 19.04	R-5 -2.4287
R-10 -30.78 9.63	R-5 -2.4287 R-10 -2.5295
R-15 -35.37 5.54	R-15 -2.5699
R-30 -41.04 .50	R-30 -2.60 -1.03
Intercept717	Intercent _ 994
Slope(DD) 8005.86	Slope(DD) 22 24
Curve(DDS) -157.062	Slope(DD) 22.24 Curve(DDS) 10.474
(444)	10.474
Log Mass Wall	Log Mass Wall
4in -11.63 26.67	4in89 .50
6in -22.18 17.28	6in -1.6518
8in -27.81 12.27	8in -1.8839
10in -31.26 9.20	10in -1.8939
12in -33.57 7.15	1011 -1.0939 10:n 1 07 20
Intercept 786	12in -1.8738
Intercept .786 Slope(DD) 7064.56	Intercept .291
Curve(DDS) 82.984	Slope(DD) -589.79
cdi ve(DDS) 82.984	Curve(DDS) 165.030
Window Solar Gain	
Doltas for Avenue Winds	Iniantations (MDE)
Deltas for Average Window (1-Pane .00	· · · · · · · · · · · · · · · · · · ·
	1-Pane .00
_ -	2-Pane32
3-Pane 2.36	3-Pane 57
A 1 - L	N. (-1)
Alphas (KE	
North East	South West
Heating -55.712 -104.291	, :=:::=
Cooling 3.161 6.517	7.467 8.081 .908638023047

-211-Honolulu HI One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 .01 -.07 -.71 1.11 R-0 R-5 -.11 -.03 R-5 -2.96 -.89 R-10 -.11 -.03 R-10 **-**3.78 -1.62 R-15 -.11 -.11 -.03 R-15 -4.18 -1.98 R-30 -.03 R-30 -4.34 -2.12 Intercept -.013 Intercept -2.334 Slope(DD) -5.60 Slope(DD) 476.17 Curve (DDS) 1.408 Curve (DDS) 5.721 120 lb Mass Wall 120 lb Mass Wall R-0 -.09 -.01 R-0 -.98 .87 -.03 R-5 **-.11** R-5 -3.27 -1.17 -.03 R-10 -.11 -4.17 -1.97 R-10 -.11 -.11 R-15 -.03 -4.43 -2.20 R-15 -4.45 -4.52 -2.28 R-30 -.03 R-30 Intercept -.015 Intercept -2.450 Slope(DD) -2.80 Slope(DD) 374.01 Curve(DDS) .704 Curve(DDS) 17.747 Log Mass Wall Log Mass Wall .02 4in -.06 -1.21 .66 4in 6in -.10 -.02 6in -2.21-.23 8in -.11 -.03 8in -2.81 -.76 -2.81 -.76 -3.18 -1.09 10 in -.11 -.03 10in 12in -.11 -.03 12in -3.32 -1.21 Intercept .012 Intercept -2.103 Slope(DD) -32.55 Slope(DD) Curve(DDS) 690.35 Curve (DDS) 8.804

Window Solar Gain

Deltas for Average Window Orientations (MBtu) 1-Pane .00 1-Pane .00 2-Pane .00 2-Pane -1.743-Pane .00 3-Pane -3.21

Alphas (KBtu/sf) Beta Intercept North East South -.046 -.071 -.090 West -.071-13.709700 -.000957 Heating 76.444 155.997 125.618 107.318 -.002716 Cooling .086398

Jacksonville FL One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall .89 R-0 7.56 R-0 -.68 2.90 R-5 -4.86 2.45 . 27 R-5 -3.64 R-10 -6.79 .73 R-10 -4.60 -.59 R-15 -7.60 .01 R-15 -5.06 -1.00 R-30 -8.45 -.75 R-30 -5.58 -1.46 Intercept -.854 Intercept -1.526Slope(DD) 1235.54 Slope(DD) 695.88 Curve(DDS) 9.819 Curve(DDS) -1.535120 lb Mass Wall 120 lb Mass Wall . 54 R-0 7.25 R-0 -1.04 2.58 -5.03 R-5 2.30 R-5 -3.83 .10 .61 R-10 R-10 -6.92-4.84 -.80 -7.71 R-15 -.09 R-15 -1.16 -5.24 R-30 -8.54 -.83 R-30 -5.75 -1.61 Intercept -.919 Intercept -1.690 Slope(DD) 1214.85 Slope(DD) 697.78 Curve(DDS) 7.845 Curve (DDS) -4.874 Mass Wall Log Mass Wall Log 4in -2.56 4.49 4in -1.65 2.04 6in -4.96 2.36 6in -3.01 . 83 8in -6.12 1.33 8in -3.62 . 28 10in -6.75 .76 10in -3.95 -.01 12in -7.14 .42 12in -4.19 -.22 Intercept -.353 Intercept -.590 858.67 Slope(DD) Slope(DD) 408.85 Curve(DDS) 127.305 Curve (DDS) 81.398 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 .00 -1.12 1-Pane

2-Pane

3-Pane

West

-24.591

68.217

-2.06

Beta

.037142 -.036945

-.000246 -.020907

Intercept

2-Pane

3-Pane

Heating

Cooling

.30

.57

-15.843

44.973

Alphas (KBtu/sf)

-45.874

71.588

North East South

-28.554

One Story Prototype Mass and Window runs

	and window runs
Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-0 14.23 55.48 R-5 -20.63 24.46 R-10 -33.41 13.08 R-15 -38.95 8.15 R-30 -45.80 2.06 Intercept .524 Slope(DD) 9451.70 Curve(DDS) -135.068	95 lb Mass Wall R-00202 R-50202 R-100202 R-150202 R-300202 Intercept018 Slope(DD) .00 Curve(DDS)000
120 lb Mass Wall R-0 14.11 55.37 R-5 -20.70 24.39 R-10 -33.47 13.03 R-15 -39.00 8.11 R-30 -45.85 2.01 Intercept .485 Slope(DD) 9446.60 Curve(DDS) -135.689	120 b Mass Wall R-0
Log Mass Wall 4in -12.09 32.06 6in -24.05 21.41 8in -30.59 15.59 10in -34.73 11.91 12in -37.57 9.38 Intercept .966 Slope(DD) 9132.54 Curve(DDS) -70.033	Log Mass Wall 4in0101 6in0202 8in0202 10in0202 12in0202 Intercept007 Slope(DD) -10.88 Curve(DDS) 2.503
Window Solar Gain	
Deltas for Average Wi 1-Pane .00 2-Pane 1.07 3-Pane 1.99	ndow Orientations (MBtu) 1-Pane .00 2-Pane01 3-Pane01
North	as (KBtu/sf) Beta Intercept East South West 2.496 -114.489 -80.517 .008198 .043927 .023 .047 .057805.213500013247

Kansas City MO One Story Prototype Mass and Window runs

	·	s sype mass and mindow runs	
	Heating Load	Cooling Load	
	Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)	
	95 lb Mass Wall R-0 6.60 28.92 R-5 -12.26 12.13 R-10 -19.02 6.12 R-15 -21.93 3.53 R-30 -25.46 .38 Intercept311 Slope(DD) 4873.12 Curve(DDS) -49.509	95 lb Mass Wall R-031 3.87 R-5 -3.35 1.17 R-10 -4.40 .23 R-15 -4.8416 R-30 -5.5276 Intercept799 Slope(DD) 808.21 Curve(DDS) -10.986	
	120 lb Mass Wall R-0 6.30 28.65 R-5 -12.40 12.01 R-10 -19.14 6.01 R-15 -22.04 3.43 R-30 -25.56 .30 Intercept400 Slope(DD) 4872.57 Curve(DDS) -52.958	120 lb Mass Wall R-061 3.61 R-5 -3.55 .99 R-10 -4.55 .10 R-15 -4.9828 R-30 -5.6084 Intercept842 Slope(DD) 755.35 Curve(DDS) -7.972	
	Log Mass Wall 4in -6.96 16.85 6in -13.72 10.83 8in -17.29 7.66 10in -19.47 5.72 12in -20.96 4.39 Intercept .353 Slope(DD) 4434.05 Curve(DDS) 65.212	Log Mass Wall 4in -1.52 2.80 6in -2.97 1.50 8in -3.69 .86 10in -4.05 .54 12in -4.27 .35 Intercept053 Slope(DD) 462.51 Curve(DDS) 86.361	
	Window Solar Gain		
	Deltas for Average Wir 1-Pane .00 2-Pane .90 3-Pane 1.68	dow Orientations (MBtu) 1-Pane .00 2-Pane80 3-Pane -1.48	
	Alpha North	s (KBtu/sf) Beta Interc East South West	ept
•	Heating -40.535 -83	.004 -124.884 -54.365 .01096904346 .811 43.036 44.061 .00204404254	

One Story Prototype Mass and Window runs Lake Charles LA Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 1.25 8.88 R-0 .28 4.58 R-5 -5.21 3.13 R-5 -3.22 1.46 R-10 -7.40 1.18 R-10 -4.53 .30 -.19 R-15 -8.34 . 35 R-15 -5.08 R-30 -9.36 -.56 R-30 -5.78 -.82 Intercept Intercept -.694 -.980 Slope(DD) 1457.26 Curve(DDS) 4.017 Slope(DD) 965.40 Curve(DDS) -15.040 120 lb Mass Wall 120 lb Mass Wall R-0 .93 8.60 R-0 .16 4.47 -3.45 R-5 -5.37 2.99 R-5 1.26 R-10 -7.51 1.09 -4.71 R-10 .14 R-15 -8.43 . 27 R-15 -5.26 -.35 R-30 -9.46 -.65 -.99 R-30 -5.97 Intercept -.764 Intercept -1.111 Slope(DD) 1445.77 Slope(DD) 930.05 Curve(DDS) 1.351 Curve(DDS) -9.602 Log Mass Wall Log Mass Wall 4in -2.78 5.30 -1.54 2.96 4in -5.41 6in -2.96 6in -2.89 1.76 8in -6.68 1.83 8in -3.63 1.10 10in -7.39 1.19 . 65 10in -4.13 12in -7.84 .79 12in -4.41 .40 Intercept -.106 Intercept -.625 Slope(DD) 1028.28 Slope(DD) 1030.45 Curve(DDS) 126.092 Curve(DDS) -7.148 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 1-Pane .00 2-Pane .30 2-Pane -1.043-Pane .57 3-Pane -1.90 Alphas (KBtu/sf)

North East South

-29.136

76.260

-18.513

44.134

Heating

Cooling

Beta

.037026

64.049 70.718 -.001502 -.028693

West

-43.239 -26.885

Intercept

-.021703

Alphas (KBtu/sf)

-24.608 -50.486 -89.326 -44.692

27.688 64.272 51.513 68.666 .005241

North East South

Heating

Cooling

Beta

.021445 -.101239

West

Intercept

Los Angeles CA One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 -.04 8.74 R-O -.68 . 10 -7.71 R-5 1.92 R-5 -1.02 R-10 -10.13-.24 R-10 -1.07 -.25 R-15 -11.15 -1.14R-15 -1.13 -.30 R-30 -12.04 -1.93 R-30 -1.16 -.33 Intercept -1.964 Intercept -.266 Slope(DD) 1387.52 Slope(DD) 37.03 Curve(DD\$) 38.930 Curve(DDS) 3.756 120 lb Mass Wall 120 lb Mass Wall R-0 - .79 8.08 R-0 -.78 .01 R-5 -8.02 1.64 R-5 -1.08 -.26 -.44 R-10 -10.36 R-10 -1.16 -.33 R-15 -11.34 -1.31 R-30 -12.19 -2.07 R-15 -1.18 -.35 R-30 -1.22 -.38 Intercept -2.076Intercept -.319Slope(DD) 1357.35 Slope(DD) 35.83 Curve(DDS) 32.164 Curve (DDS) 3.240 Mass Wall Log Mass Wall Log 4in -3.79 -.39 -.75 5.41 . 36 4in 6in -7.37 2.22 6in .04 .85 -8.91 8in 8in -.82 -.02 10in -9.62 . 22 10in -.86 -.06 12in -10.05 -.16 12in -.88 -.08 -.251 Intercept .154 Intercept Slope(DD) 252.68 Slope(DD) -184.55 Curve(DDS) 337.267 Curve(DDS) 61.916 Window Solar Gain

 Deltas for Average Window Orientations (MBtu)

 1-Pane
 .00

 2-Pane
 .54

 2-Pane
 -.30

 3-Pane
 1.03

Alphas (KBtu/sf) Beta Intercept West North East South Heating -44.153 -65.332 -85.665 -69.967 .022196 -.284815 . 489 Cooling . 235 .516 .541247.921203 -.091191

Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 b Mass Wall R-0	95 lb Mass Wall R-0 -3.19 .38 R-5 -5.12 -1.33 R-10 -5.53 -1.70 R-15 -5.68 -1.83 R-30 -5.84 -1.97 Intercept -1.684 Slope(DD) 136.13 Curve(DDS) 29.838
120 lb Mass Wall R-0 2.82 25.17 R-5 -15.00 9.31 R-10 -21.40 3.61 R-15 -24.18 1.14 R-30 -27.38 -1.71 Intercept -2.265 Slope(DD) 4554.99 Curve(DDS) -41.217	120 lb Mass Wall R-0 -3.9933 R-5 -5.52 -1.69 R-10 -5.82 -1.96 R-15 -5.93 -2.05 R-30 -6.06 -2.17 Intercept -1.839 Slope(DD) 90.66 Curve(DDS) 25.174
Log Mass Wall 4in -7.69 15.81 6in -15.37 8.98 8in -19.13 5.63 10in -21.16 3.83 12in -22.46 2.67 Intercept .109 Slope(DD) 2932.32 Curve(DDS) 381.131	Log Mass Wall 4in -2.15 1.31 6in -3.9226 8in -4.4775 10in -4.4977 12in -4.4372 Intercept .877 Slope(DD) -1391.16 Curve(DDS) 387.788
Window Solar Gain	
Deltas for Average Window Orien 1-Pane .00 2-Pane .66 3-Pane 1.23	tations (MBtu) 1-Pane .00 2-Pane55 3-Pane99
Heating -38.150 -52.110 -80	f) Beta Intercept outh West .784 -53.708 .015144042401 .137 21.225 .188206 .962447

Memphis TN One Story Prototype Mass and Window runs

	Cooling Load	Heating Load
	Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
	95 lb Mass Wall R-009 4.08 R-5 -3.23 1.28 R-10 -4.34 .30 R-15 -4.8516 R-30 -5.4569 Intercept774 Slope(DD) 828.20 Curve(DDS) -10.110	95 lb Mass Wall R-0 3.86 17.91 R-5 -8.04 7.32 R-10 -12.25 3.57 R-15 -14.05 1.97 R-30 -16.20 .06 Intercept331 Slope(DD) 2977.06 Curve(DDS) -21.581
	120 lb Mass Wall R-028 3.91 R-5 -3.41 1.12 R-10 -4.53 .13 R-15 -5.0029 R-30 -5.6688 Intercept953 Slope(DD) 841.06 Curve(DDS) -11.748	120 lb Mass Wall R-0 3.57 17.65 R-5 -8.22 7.16 R-10 -12.37 3.47 R-15 -14.16 1.87 R-30 -16.2902 Intercept383 Slope(DD) 2943.29 Curve(DDS) -20.923
•	Log Mass Wall 4in -1.56 2.77 6in -2.94 1.54 8in -3.60 .95 10in -4.02 .58 12in -4.26 .37 Intercept224 Slope(DD) 649.22 Curve(DDS) 49.485	Log Mass Wall 4in -4.44 10.52 6in -8.80 6.64 8in -11.11 4.59 10in -12.51 3.34 12in -13.42 2.53 Intercept015 Slope(DD) 2756.54 Curve(DDS) 58.555
	ndow Orientations (MBtu) 1-Pane .00 2-Pane79 3-Pane -1.45	Window Solar Gain Deltas for Average William 1-Pane .00 2-Pane .59 3-Pane 1.10
Intercept010883033671	as (KBtu/sf) Beta East South West 6.235 -82.958 -42.984 .016487 6.223 44.416 59.557001367	North Heating -25.182 -4

Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 b Mass Wall R-024 .91 R-5 -1.21 .05 R-10 -1.4618 R-15 -1.5627 R-30 -1.6333 Intercept279 Slope(DD) 102.20 Curve(DDS) 11.992	95 lb Mass Wall R-0
120 lb Mass Wall R-041 .76 R-5 -1.2903 R-10 -1.5223 R-15 -1.6232 R-30 -1.6837 Intercept322 Slope(DD) 98.83 Curve(DDS) 10.303	120 lb Mass Wall R-0 .31 4.53 R-5 -4.09 .62 R-10 -5.5467 R-15 -6.18 -1.24 R-30 -6.85 -1.84 Intercept -2.032 Slope(DD) 956.91 Curve(DDS) 6.072
Log Mass Wall 4in61 .58 6in -1.13 .12 8in -1.3407 10in -1.4416 12in -1.5021 Intercept209 Slope(DD) 9.74 Curve(DDS) 52.456	Log Mass Wall 4in -1.59 2.84 6in -3.12 1.48 8in -4.15 .56 10in -4.73 .05 12in -5.1432 Intercept -2.072 Slope(DD) 1585.94 Curve(DDS) -63.607
Window Solar Gain Deltas for Average Window Or 1-Pane .00	·
2-Pane .03 3-Pane .05	1-Pane .00 2-Pane -1.54 3-Pane -2.85
Alphas (KBt North East Heating -1.403 -2.048 Cooling 70.903 116.346	South West -2.577 -1.895 .317152007584 113.599 106.614002752021583

Minneapolis MN One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 9.35 45.37 R-0 -1.58 . 65 R-5 -18.92 20.22 R-5 -3.00 -.61 -.90 R-10 -29.78 10.55 R-15 -34.49 6.36 R-10 -3.33 6.36 1.21 R-15 -3.46 -1.02 R-30 -40.28 R-30 -3.68 -1.22 Intercept -.159 Intercept -1.079 Slope(DD) 8205.13 Slope(DD) 186.76 Curve(DDS) -160.688 Curve(DDS) 13.104 120 lb Mass Wall 120 | b Mass Wall R-0 9.08 45.13 .23 R-0 -2.06 R-5 -19.07 20.08 R-5 -3.25 -.83 R-10 -29.90 10.44 R-15 -34.60 6.26 R-10 -3.56 -1.11 -3.64 -1.18 -3.77 -1.30 R-15 R-30 -40.40 1.10 R-30 Intercept -.258 Intercept -1.137 8205.25 Slope(DD) Slope(DD) 122.47 Curve(DDS) -163.512 Curve(DDS) 14.873 Log Mass Wall Log Mass Wall 4in -11.20 27.09 6in -21.53 17.89 4in -1.07 1.11 .16 6in -2.13 8in -27.16 12.88 8in -2.55-.21 10in -30.69 9.74 10in -2.65 -.30 12in -33.09 7.61 -.33 12 in -2.68 .133 Intercept .605 Intercept 7660.85 Slope(DD) -404.78 Slope(DD) Curve(DDS) -26.648 Curve (DDS) 171.282 Window Solar Gain Deltas for Average Window Orientations (MBtu) .00

3-Pane	2.09		_	-Pane	86	
		Iphas (KI	• . •		Beta	Intercept
Heating	North -43.733	East -81.060	South -138.954	West -77.440	.007192	144884

18.440 17.401

1-Pane

2-Pane

21.050

.00

.113085 -.094345

-.47

1-Pane

2-Pane

Cooling

1.12

One Story Prototype Mass and Window runs

Heating Load	Cooling Load	
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)	·
95 lb Mass Wall R-0	95 b Mass Wall R-O -1.03 2.79 R-5 -3.80 .33 R-10 -4.6644 R-15 -5.0175 R-30 -5.53 -1.21 Intercept -1.163 Slope(DD) 594.42 Curve(DDS) 3.847	
120 lb Mass Wall R-0	120 lb Mass Wall R-0 -1.47 2.40 R-5 -4.09 .07 R-10 -4.9166 R-15 -5.2697 R-30 -5.74 -1.40 Intercept -1.340 Slope(DD) 572.07 Curve(DDS) 2.744	
Log Mass Wall 4in -5.05 12.12 6in -10.01 7.71 8in -12.66 5.35 10in -14.24 3.95 12in -15.27 3.03 Intercept .161 Slope(DD) 3121.00 Curve(DDS) 69.861	Log Mass Wall 4in -1.58 2.30 6in -3.12 .93 8in -3.87 .26 10in -4.15 .01 12in -4.2608 Intercept047 Slope(DD) 2.74 Curve(DDS) 165.785	
Window Solar Gain		
Deltas for Average Window Orient 1-Pane .00 2-Pane .58 3-Pane 1.08	ntations (MBtu) 1-Pane00 2-Pane73 3-Pane -1.33	
Heating -27.511 -44.348 -74	South West 4.397 -42.917 .016194 0.690 47.631 .002913	Intercept030420032631

120 lb Mass Wall 120 lb Mass Wall R-0 7.46 31.21 R-0 -1.35 R-5 -13.00 13.00 R-5 -2.75 R-10 -20.25 6.55 R-15 -23.35 3.79 R-10 -3.17 R-15 -3.33 -.90 R-30 -27.10 -3.58 -1.12 . 45 R-30 Intercept -.268 Intercept Slope(DD) 5158.64 Slope(DD) Curve(DDS) -41.234 Curve(DDS)

Log Mass Wall. Log Mass Wall -7.27 18.10 -14.46 11.70 4in 4in -.89 1.27 6in 6in -1.85 .41 8in -18.29 8.30 8in -2.29 .02 10in -20.66 6.19 10 i n -2.47 -.14 12in -22.27 4.75 -2.55 -.21 12in Intercept .226 Intercept -.212 Slope(DD) 4918.52 5.91 Slope(DD) Curve(DDS) 40.226 Curve(DDS) 101.362

.86

-.39

-.76

-1.058

273.81

4.549

Window Solar Gain

Deltas for Average Window Orientations (MBtu) 1-Pane .00 1-Pane .00 2-Pane .82 2-Pane -.50 3-Pane 1.52 3-Pane -.91

Alphas (KBtu/sf) Beta Intercept North East South West -60.106 -97.645 -58.638 25.781 24.953 27.258 Heating -38.631 .010480 -.159122 Cooling 16.519 .031140 -.081255

Oklahoma City OK One Story	Prototype Mass and Window runs
Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-0	95 lb Mass Wall R-062 3.24 R-5 -3.55 .63 R-10 -4.5425 R-15 -4.9562 R-30 -5.52 -1.13 Intercept -1.155 Slope(DD) 709.13 Curve(DDS) -3.435
120 lb Mass Wall R-0	120 lb Mass Wall R-0 -1.00 2.90 R-5 -3.76 .44 R-10 -4.7645 R-15 -5.1781 R-30 -5.67 -1.26 Intercept -1.304 Slope(DD) 698.12 Curve(DDS) -5.586
Log Mass Wall 4in -5.35 12.74 6in -10.60 8.07 8in -13.37 5.61 10in -15.02 4.14 12in -16.11 3.17 Intercept .240 Slope(DD) 3213.17 Curve(DDS) 85.906	Log Mass Wall 4in -1.56 2.40 6in -2.94 1.17 8in -3.62 .57 10in -3.95 .27 12in -4.22 .03 Intercept444 Slope(DD) 521.34 Curve(DDS) 68.943
Window Solar Gain Deltas for Average Window	Orientations (MRt)
1-Pane .00 2-Pane .72 3-Pane 1.35	1-Pane .00 2-Pane82 3-Pane -1.51
Alphas (KI North East Heating -31.634 -58.815 Cooling 31.949 56.506	South West -96.792 -54.799 .013497 .029556

Omaha NB One Story Prototype Mass and Window runs

	Cooling Load	Heating Load
	Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
	95 lb Mass Wall R-0 -1.23 2.10 R-5 -3.51 .07 R-10 -4.1752 R-15 -4.4375 R-30 -4.79 -1.07 Intercept960 Slope(DD) 406.29 Curve(DDS) 11.368	95 lb Mass Wall R-0 8.37 36.14 R-5 -15.06 15.29 R-10 -23.50 7.78 R-15 -27.12 4.56 R-30 -31.50 .66 Intercept220 Slope(DD) 6075.80 Curve(DDS) -63.345
	120 lb Mass Wall R-0 -1.65 1.73 R-5 -3.7615 R-10 -4.3870 R-15 -4.6393 R-30 -5.00 -1.25 Intercept -1.140 Slope(DD) 408.30 Curve(DDS) 7.214	120 b Mass Wall R-0 8.05 35.86 R-5 -15.23 15.14 R-10 -23.63 7.66 R-15 -27.23 4.46 R-30 -31.60 .57 Intercept292 Slope(DD) 6056.62 Curve(DDS) -64.871
	Log Mass Wall 4in -1.45 1.90 6in -2.82 .69 8in -3.40 .17 10in -3.5900 12in -3.7010 Intercept .197 Slope(DD) -206.17 Curve(DDS) 174.640	Log Mass Wall 4in -8.65 20.99 6in -16.98 13.58 8in -21.40 9.65 10in -24.12 7.23 12in -25.96 5.59 Intercept .520 Slope(DD) 5572.23 Curve(DDS) 65.034
		Window Solar Gain
	ndow Orientations (MBtu) 1-Pane .00 2-Pane69 3-Pane -1.27	Deltas for Average Wi 1-Pane .00 2-Pane 1.02 3-Pane 1.89
Intercept149947088089	as (KBtu/sf) Beta East South West 3.986 -134.997 -68.479 .008432 0.569 34.311 45.488 .012970	North Heating -39.856 -7

```
Philadelphia PA
                   One Story Prototype Mass and Window runs
          Heating Load
                                            Cooling Load
       Delta Component
                                         Delta Component
        (MBtu) (KBtu)
                                          (MBtu) (KBtu)
   95 lb Mass Wall
                                     95 lb Mass Wall
   R-0
          7.03 30.37
                                            -1.34 1.33
                                     R-0
         -12.83 12.70
   R-5
                                     R-5
                                            -3.07
                                                   -.21
   R-10
        -19.89
                 6.42
                                     R-10
                                           -3.56
                                                   -.64
   R-15 -22.92
                  3.72
                                    R-15
   R-30 -26.59
                                           -3.75
                                                   -.81
                  . 45
                                          -4.01 -1.04
                                    R-30
   Intercept
                  .242
                                    Intercept
                                                 -.938
   Slope(DD)
               5050.64
                                    Slope(DD)
Curve(DDS)
                                                 290.16
   Curve(DDS) -44.304
                                                 10.408
   120 lb Mass Wall
                                    120 lb Mass Wall
  R-0
         6.68 30.06
                                    R-0
                                         -1.77
                                                 . 95
  R-5
        -12.98 12.56
                                    R-5
                                           -3.34
                                                   -.45
  R-10 -20.00
                 6.32
                                    R-10
                                          -3.77
                                                   -.83
  R-15 -23.02
                 3.63
                                    R-15
                                           -3.95
                                                   -.99
  R-30 -26.68
                 . 37
                                          -4.20 -1.21
                                    R-30
  Intercept
                -.316
                                    Intercept
                                                  -1.086
  Slope(DD)
              5045.46
                                    Slope(DD)
                                                 269.09
  Curve(DDS) -48.296
                                    Curve(DDS)
                                                  8.696
   Log
         Mass Wall
                                     Log
                                           Mass Wall
         -7.22 17.69
-14.35 11.35
   4in
                                     4in
                                          -1.19
                                                 1.47
   6in -14.35
                                     6in
                                           -2.35
                                                   . 43
   8in -18.11
                8.00
                                     8in
                                          -2.82
                                                   .02
  10in -20.37
12in -21.90
                 5.99
                                    10 i n
                                          -3.01
                                                   -.15
                 4.63
                                    12in
                                          -3.05
                                                   -.19
  Intercept
                 .545
                                   Intercept
                                                   .092
  Slope(DD)
              4500.81
                                    Slope(DD)
                                                -232.30
  Curve (DDS)
               95.405
                                   Curve(DDS) 156.381
  Window Solar Gain
  Deltas for Average Window Orientations (MBtu)
  1-Pane
              .00
                                    1-Pane
                                                 .00
  2-Pane
                .87
                                    2-Pane
                                                -.56
  3-Pane
                                    3-Pane
              1.62
                                               -1.02
                  Alphas (KBtu/sf)
                                                  Beta
                                                          Intercept
             North East South
                                        West
                    -61.961 -113.110 -57.881
 Heating
           -36.379
                                                .009707 -.103012
```

Cooling

19.086

31.325 29.623

35.812

.013840 -.031879

Phoenix AZ One Story Prototype Mass and Window runs

	y crossype mass and window runs
Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-098 5.29 R-5 -6.05 .77 R-10 -7.5657 R-15 -8.17 -1.11 R-30 -8.67 -1.56 Intercept -1.441 Slope(DD) 775.96 Curve(DDS) 39.528	95 b Mass Wall R-0 .95 11.50 R-5 -7.21 4.24 R-10 -10.14 1.63 R-15 -11.37 .54 R-30 -12.9385 Intercept -1.059 Slope(DD) 2109.48 Curve(DDS) -21.602
120 lb Mass Wall R-0 -1.63 4.71 R-5 -6.32 .53 R-10 -7.7473 R-15 -8.33 -1.26 R-30 -8.80 -1.67 Intercept -1.535 Slope(DD) 751.91 Curve(DDS) 33.296	120 lb Mass Wall R-0 .44 11.05 R-5 -7.63 3.86 R-10 -10.41 1.39 R-15 -11.62 .31 R-30 -13.16 -1.06 Intercept -1.180 Slope(DD) 2019.72 Curve(DDS) -15.621
Log Mass Wall 4in -3.04 3.45 6in -5.73 1.06 8in -6.76 .14 10in -7.1420 12in -7.3639 Intercept .312 Slope(DD) -500.55 Curve(DDS) 352.432	Log Mass Wall 4in -3.56 7.49 6in -7.02 4.41 8in -8.75 2.87 10in -9.67 2.05 12in -10.23 1.55 Intercept .433 Slope(DD) 1323.93 Curve(DDS) 173.227
Window Solar Gain	
Deltas for Average Window 1-Pane .00 2-Pane .21 3-Pane .40	Orientations (MBtu) 1-Pane .00 2-Pane -1.16 3-Pane -2.12
Alphas (North East Heating -15.022 -24.60 Cooling 34.200 77.67	06 -31.009 -20.284 .055144200102

Pittsburgh PA One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 8.02 36.21 R-0 -1.85 .34 -15.53 15.26 R-5 R-5 -.75 -3.07 R-10 -23.98 R-15 -27.61 R-30 -32.06 7.74 R-10 -3.32 -.97 4.51 -3.43 -1.07 R-15 . 55 R-30 -3.55 -1.18 Intercept -.292 Intercept -1.004 Slope(DD) 6111.04 Slope(DD) 102.70 Curve(DDS) -64.523 Curve(DDS) 17.044 120 | b Mass Wall 120 lb Mass Wall 7.60 35.84 R-0 R-0 -2.36 -.12 R-5 -15.74 15.07 -3.30 -.95 R-5 R-10 -24.13 7.60 -3.52 -1.15 R-10 R-15 -27.75 4.38 R-15 -3.62 -1.24R-30 -32.18 . 44 R-30 -3.73 -1.34 Intercept -.382 Intercept -1.172 Slope(DD) 6091.30 Slope(DD) 113.83 Curve(DDS) -67.388 Curve (DDS) 9.801 Log Mass Wall Log Mass Wall 4in -8.79 21.25 6in -17.33 13.65 .92 4 in -1.20 6in -2.26 -.03 8in -21.82 9.66 8in -2.60 -.33 10in -24.56 7.22 10 i n -2.64 -.37 12in -26.39 5.59 12in -2.62 -.35 Intercept .660 Intercept .489 5447.54 Slope(DD) -726.45 Slope(DD) Curve(DDS) 105.273 Curve(DDS) 216.549 Window Solar Gain Deltas for Average Window Orientations (MBtu)

1-Pane

2-Pane

3-Pane

West

-75.105

24.913

.00

-.48

-.86

Beta

.010820

Intercept

-.093961

.115445 -.085631

1-Pane

2-Pane

3-Pane

Heating

Cooling

.00

1.62

-47.337

12.013

.87

Alphas (KBtu/sf)

-99.780

16.530

North East South

-62.301

Portland ME One Story Prototype Mass and Window runs

Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-0 10.16 44.13 R-5 -18.44 18.68 R-10 -28.72 9.53 R-15 -33.14 5.60 R-30 -38.54 .79 Intercept268 Slope(DD) 7436.37 Curve(DDS) -79.697	95 lb Mass Wall R-0 -1.1903 R-5 -1.8158 R-10 -1.9470 R-15 -1.9873 R-30 -2.0580 Intercept700 Slope(DD) 47.76 Curve(DDS) 9.100
120 lb Mass Wall R-0 9.71 43.73 R-5 -18.65 18.49 R-10 -28.87 9.40 R-15 -33.27 5.48 R-30 -38.66 .69 Intercept357 Slope(DD) 7419.54 Curve(DDS) -83.523	120 lb Mass Wall R-0 -1.5031 R-5 -1.9974 R-10 -2.0882 R-15 -2.1084 R-30 -2.1588 Intercept768 Slope(DD) 20.06 Curve(DDS) 8.886
Log Mass Wall 4in -10.47 25.77 6in -20.72 16.65 8in -26.15 11.82 10in -29.47 8.86 12in -31.71 6.87 Intercept .741 Slope(DD) 6738.45 Curve(DDS) 97.630	Log Mass Wall 4in69 .42 6in -1.2912 8in -1.5031 10in -1.5232 12in -1.4930 Intercept .182 Slope(DD) -433.80 Curve(DDS) 126.985
Window Solar Gain	
Deltas for Average Window (1-Pane .00 2-Pane 1.12 3-Pane 2.08	Orientations (MBtu) 1-Pane .00 2-Pane28 3-Pane49
Alphas (KE North East Heating -51.808 -83.089 Cooling 4.299 7.052	Beta Intercept South West -136.151 -82.981 .007923 161722 6.804 7.270 .703054 081469

	t syps mass and window	i ulis
Heating Load	Cooling Load	
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)	
95 b Mass Wall R-0 4.19 25.96 R-5 -14.10 9.69 R-10 -20.50 3.99 R-15 -23.25 1.54 R-30 -26.43 -1.29 Intercept -1.825 Slope(DD) 4456.82 Curve(DDS) -21.342	95 lb Mass Wall R-0 -1.56 .23 R-5 -2.7179 R-10 -2.9399 R-15 -3.02 -1.07 R-30 -3.12 -1.16 Intercept -1.012 Slope(DD) 71.73 Curve(DDS) 18.508	
120 lb Mass Wall R-0 3.38 25.24 R-5 -14.48 9.35 R-10 -20.78 3.74 R-15 -23.49 1.33 R-30 -26.63 -1.46 Intercept -1.970 Slope(DD) 4414.97 Curve(DDS) -26.884	120 lb Mass Wall R-0 -2.1025 R-5 -2.98 -1.03 R-10 -3.15 -1.19 R-15 -3.22 -1.25 R-30 -3.29 -1.31 Intercept -1.152 Slope(DD) 52.81 Curve(DDS) 14.409	
Log Mass Wall 4in -7.48 15.58 6in -14.77 9.09 8in -18.36 5.89 10in -20.38 4.10 12in -21.68 2.94 Intercept .181 Slope(DD) 3147.35 Curve(DDS) 307.422 Window Solar Gain	Log Mass Wall 4in94 .78 6in -1.9512 8in -2.3346 10in -2.3749 12in -2.3447 Intercept .228 Slope(DD) -647.27 Curve(DDS) 202.218	,
	ndow Orientations (MBtu) 1-Pane .00 2-Pane38 3-Pane68	
North Heating -52.468 -93	Beta (KBtu/sf) Beta East South West 3.714 -98.498 -52.942 .014879 3.129 9.157 4.310 .414196	Intercept401812 .028915

One Story Prototype Mass and Window runs

Delta Component Delta Component (MBtu) (KBtu) (MBtu)	
(MDCU) (NDCU)	
95 lb Mass Wall 95 lb Mass Wall R-0 4.34 30.12 R-0 -3.19 .39 R-5 -16.35 11.71 R-5 -5.00 -1.22 R-10 -23.62 5.24 R-10 -5.35 -1.53 R-15 -26.75 2.46 R-15 -5.49 -1.66 R-30 -30.4483 R-30 -5.62 -1.77 Intercept -1.336 Intercept -1.454 Slope(DD) 5123.41 Slope(DD) 98.05 Curve(DDS) -32.456 Curve(DDS) 30.753	
120 lb Mass Wall 120 lb Mass Wall R-0 3.31 29.21 R-0 -4.0336 R-5 -16.78 11.33 R-5 -5.38 -1.56 R-10 -23.93 4.97 R-10 -5.65 -1.80 R-15 -27.02 2.22 R-15 -5.74 -1.88 R-30 -30.67 -1.03 R-30 -5.83 -1.96 Intercept -1.515 Intercept -1.616 Slope(DD) 5095.09 Slope(DD) 63.69 Curve(DDS) -43.112 Curve(DDS) 23.985	
Log Mass Wall 4in -8.72 18.50 6in -17.30 10.87 8in -21.45 7.17 10in -23.71 5.16 12in -25.14 3.89 12in -4.2051 Intercept 1.291 Intercept 1.291 Slope(DD) 3159.61 Curve(DDS) 441.299 Log Mass Wall 4in -1.99 1.46 6in -3.8015 8in -4.3161 10in -4.3060 12in -25.14 3.89 12in -4.2051 Intercept 1.355 Slope(DD) -1624.27 Curve(DDS) 441.299 Curve(DDS) 424.946	
Window Solar Gain Deltas for Average Window Orientations (MBtu)	
1-Pane .00 1-Pane .00 2-Pane 1.19 2-Pane60 3-Pane 2.23 3-Pane -1.08	
Alphas (KBtu/sf) Beta Interce North East South West Heating -49.219 -111.056 -196.146 -92.120 .009334098980 Cooling 11.224 23.471 20.030 28.667 .096144048575	•

Salt Lake City U One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 6.58 32.85 -15.22 13.45 -2.14 1.57 R-0 R-5 R-5 -4.52 -.54 R-10 -22.98 -5.09 -1.05 -5.30 -1.24 -5.61 -1.51 6.54 R-10 -26.33 R-15 3.56 R-15 R-30 -30.31 .02 R-30 Intercept -.692 Intercept -1.279Slope(DD) 5538.40 Slope(DD) 282.69 Curve(DDS) -47.810 Curve(DDS) 25.363 120 lb Mass Wall 120 lb Mass Wall 6.05 32.38 R-0 R-0 -2.84 .95 R-5 -15.46 13.23 R-5 -4.84 R-10 -23.16 R-15 -26.48 6.38 -5.33 -1.26 R-10 3.43 R-15 -5.54 -1.45 R-30 -30.44 - .10 R-30 -5.80 -1.68 Intercept -.789 Intercept -1.440Slope(DD) 5515.90 Slope(DD) 266.31 Curve(DDS) -52.087 Curve(DDS) 18.512 Log Mass Wall Log Mass Wall -8.51 19.42 4in 1.75 4in -1.946in -16.70 12.13 6in -3.57 .30 8in -20.89 8.40 8in -4.09 -.16 10in -23.35 6.21 10in -4.16 -.22 12in -24.99 4.75 -4.20 12in -.26 Intercept .783 Intercept .925 Slope(DD) 4490.50 -965.28 Slope(DD) Curve(DDS) 207.098 Curve(DDS) 309 166 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane . 00 1-Pane . 00 2-Pane 1.12 2-Pane -.66 3-Pane 2.09 3-Pane -1.20 Alphas (KBtu/sf) Beta Intercept North East South West

-93.332 -163.448 -86.551

37.441

33.198 26.211

.009277 -.126593

.040661 -.030251

Heating

Cooling

-48.785

One Story Prototype Mass and Window runs San Antonio TX Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall .64 8.22 -5.89 2.41 R-0 R-0 .37 5.22 R-5 R-5 -3.66 . 54 R-10 -7.99 .37 -.18 R-10 -5.07 R-15 -8.88 -.25 R-15 -5.69 -9.73 -1.01 R-30 R-30 -6.43 -.84 Intercept -1.051 Intercept -.968 Slope(DD) 1269.39 Slope(DD) 1014.17 Curve (DDS) 24.274 Curve(DDS) -8.080 120 lb Mass Wall 120 lb Mass Wall R-0 . 15 7.79 .15 R-5 -6.11 2.22 R-5 -3.84 1.47 -8.16 R-10 . 39 R-10 -5.25 . 21 R-15 -9.02 -.37 -5.85 R-15 -.32 R-30 -9.85 -1.11 R-30 -6.60 -.99 Intercept -1.142 Intercept -1.114 Slope(DD) 1249.19 Slope(DD) 1011.53 Curve (DDS) 20.267 Curve(DDS) -8.695 Log Mass Wall Log Mass Wall -3.04 4.95 4in 4in -1.66 3.41 6in -5.88 2.42 6in -3.23 2.01 -7.16 8in 1.28 8in -4.07 1.26 . 70 10in -7.81 10in -4.59 . 80 12in -8.21 . 35 12in -4.87 .55 Intercept -.082 Intercept -.370 Slope(DD) 576.91 Slope(DD) Curve(DDS) 946.90 Curve(DDS) 213.053 28.979 Window Solar Gain Deltas for Average Window Orientations (MBtu) .00 1-Pane 1-Pane .00 2-Pane -1.04 . 27 2-Pane

3-Pane

West

-26.230

South

-36.192

62.273

-1.92

78.952 -.000548

Beta

.043338

Intercept

-.124841

-.034356

3-Pane

Heating

Cooling

.51

North

-18.517

42.401

Alphas (KBtu/sf)

East

-29.415

San Diego CA One Story Prototype Mass and Windo

3 the 5to	ry Prototype Mass and Window runs
Heating Load	Cooling Load
Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 Mass Wall R-0	95 lb Mass Wall R-0 -1.28 .05 R-5 -1.8243 R-10 -1.9352 R-15 -2.0260 R-30 -2.0866
120 lb Mass Wall R-0 -1.18 5.32 R-5 -6.56 .53 R-10 -8.31 -1.03 R-15 -8.94 -1.59 R-30 -9.41 -2.00 Intercept -1.964 Slope(DD) 852.56 Curve(DDS) 40.430	120 lb Mass Wall R-0 -1.6023 R-5 -1.9756 R-10 -2.1269 R-15 -2.1572 R-30 -2.1774 Intercept649 Slope(DD) 57.52 Curve(DDS) 3.178
Log Mass Wall 4in -3.13 3.58 6in -5.95 1.07 8in -7.09 .06 10in -7.5636 12in -7.8562 Intercept296 Slope(DD) -180.10 Curve(DDS) 319.782 Window Solar Gain	Log Mass Wall 4in65 .61 6in -1.25 .08 8in -1.4207 10in -1.4510 12in -1.4913 Intercept .264 Slope(DD) -320.68 Curve(DDS) 107.334
Deltas for Average Window 1-Pane .00 2-Pane .34 3-Pane .65	Orientations (MBtu) 1-Pane .00 2-Pane35 3-Pane62
Alphas (K North East Heating -31.951 -41.345 Cooling 4.927 8.470	South West -55.026 -42.541 .034901359778

San Francisco CA One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 3.58 19.61 R-0 -.38 -.06 R-5 -10.27 7.28 R-5 -.44 -.12 R-10 -15.06 R-15 -17.11 -.45 -.46 -.47 3.02 R-10 -.13 1.20 R-15 -.14 R-30 -19.36 -.81 R-30 -.14 Intercept -1.198 Intercept -.116 Slope(DD) 3233.18 Slope(DD) 9.41 Curve (DDS) -1.795 Curve(DDS) .366 120 lb Mass Wall 120 lb Mass Wall R-0 3.05 19.14 R-0 -.43 -.11 R-5 -10.50 7.08 2.88 R-5 -.47 -.14 R-10 -15.22 2.88 R-15 -17.24 1.08 R-30 -19.48 -.91 R-10 -.47 -.14 R-15 - .47 R-30 - .48 -.14 -.15 Intercept -1.283 Intercept -.116 Slope(DD) 3212.62 Slope(DD) .11 Curve(DDS) -6.596 Curve(DDS) .799 Log Mass Wall Log Mass Wall -5.45 11.57 4in -.22 .08 4in 6in -10.85 6.77 6in -.37 -.06 8in -13.51 4.40 8in -.39 -.07 10in -14.98 3.09 10in -.38 -.06 12in -15.91 2.26 -.37 -.06 12 i n Intercept Intercept .352 .163 2208.35 Slope(DD) Slope(DD) -183.45Curve(DDS) 246.595 Curve(DDS) 41.565 Window Solar Gain

1-Pane

2-Pane

3-Pane

North East South West
-65.635 -107.513 -165.029 -125.357 .010747 -.197964
.524 1.226 1.478 1.066 7.235912 -.021202

.00

-.07

-.12

Beta

Intercept

Deltas for Average Window Orientations (MBtu)

Alphas (KBtu/sf)

1-Pane .00

1.09

2.07

2-Pane

3-Pane

Heating Cooling

Seattle WA One Story Prototype Mass and Window runs

	The and arridow runs
Heating Load	C1:
-	Cooling Load
Delta Component	D . 1
(MBtu) (KBtu)	Delta Component
(11000)	(MBtu) (KBtu)
95 1h Mana W 11	, (1204)
95 lb Mass Wall	95 lb Mass Wall
7.41 33.44	
R-0 7.41 33.44 R-5 -14.56 13.89	R-06203
R-10 -22.37 6.94	R-59230
R-10 -22.37 6.94 R-15 -25.72 3.95	R-109734
R-30 -29.79 .33	K-15 - 99 - 36
Intercent	R-30 -1.0239
Intercept416 Slope(DD) 5591.63 Curve(DDS) -49.490	Intercept - 332
510pe(DD) 5591.63	Slope(DD) 14.73
Curve(DDS) -49.490	Curve (DDS) F 1FF
	Curve(DDS) 5.155
120 lb Mass Wall	100 11 14
R-0 6 06 20 04	120 lb Mass Wall
K-5 -1/1 77 10 76	R-07918
R-10 -22 F2 C 00	P_5 1 00 0m
D 15 05 00 0 00	R-10 -1.04 - 41
N=15 =25.86 3.83	R-15 -1.05 - 41
R-10 -22.52 6.80 R-15 -25.86 3.83 R-30 -29.91 .23	R-10 -1.0037 R-10 -1.0441 R-15 -1.0541 R-30 -1.0844
intercept509	Intercept384
Intercept509 Slope(DD) 5576.08 Curve(DDS) -53.410	Slope (DD) 15 00
Curve(DDS) -53,410	Slope(DD) 15.22 Curve(DDS) 3.123
, , , , , , , , , , , , , , , , , , , ,	curve(DDS) 3.123
Log Mass Wall	
4in -8.08 19.65	Log Mass Wall
6in -16.09 12.52	4in33 .23
9:n 00.04 0.00	6in6405
8in -20.24 8.83 10in -22.73 6.62	8in72 - 12
10in -22.73 6.62	10in7515
12in -24.39 5.14	12in7313
Intercept .886	Intercept .114
Intercept .886 Slope(DD) 4749.60	Slope(DD) -218.74
Curve(DDS) 150.610	Curue (DDC) - C2 - C40
, , , , , , , , , , , , , , , , , , , ,	Curve(DDS) 63.649
Window Solar Gain	
was do full daffi	
Deltas for Avenue Will or	
Deltas for Average Window Orient:	ations (MBtu)
1-1 alle .00	1-Pane .00
2-Pane .98	2-Pane 16
3-Pane 1.84	3-Pane 29
	• • •
Alphas (KBtu/sf)	Beta Intercept
North East Soi	
Heating -60.738 -86.417 -121.8	200
Cooling 1.811 3.350 4.1	20 5 555
3 =:=== 0.000 4,1	.33 5.809 1.163168036479

Washington DC One Story Prototype Mass and Window runs
Heating Load Cooling Load

Delta Component (MBtu) (KBtu)	Delta Component (MBtu) (KBtu)
95 lb Mass Wall R-0 5.95 26.30 R-5 -11.18 11.06 R-10 -17.31 5.60 R-15 -19.94 3.26 R-30 -23.16 .40 Intercept215 Slope(DD) 4419.77 Curve(DDS) -44.458	95 lb Mass Wall R-0 -1.19 2.08 R-5 -3.42 .09 R-10 -4.1051 R-15 -4.3977 R-30 -4.76 -1.10 Intercept -1.031 Slope(DD) 450.20 Curve(DDS) 6.021
120 lb Mass Wall R-0	120 lb Mass Wall R-0 -1.58 1.73 R-5 -3.6208 R-10 -4.2867 R-15 -4.5591 R-30 -4.89 -1.21 Intercept -1.143 Slope(DD) 435.47 Curve(DDS) 3.435
Log Mass Wall 4in -6.39 15.32 6in -12.55 9.84 8in -15.77 6.97 10in -17.75 5.21 12in -19.10 4.01 Intercept .417 Slope(DD) 3974.20 Curve(DDS) 68.002	Log Mass Wall 4in -1.40 1.89 6in -2.78 .66 8in -3.32 .18 10in -3.5502 12in -3.6410 Intercept .185 Slope(DD) -207.12 Curve(DDS) 174.249

Window Solar Gain

 Deltas for Average Window Orientations (MBtu)

 1-Pane
 .00

 2-Pane
 .77

 2-Pane
 -.72

 3-Pane
 1.44

Alphas (KBtu/sf) th East Sout Beta Intercept North South West -56.477 -97.795 -54.820 -34.732 .011459 .013901 Heating Cooling 26.241 40.473 39.431 47.690 .008840 -.037545

REFERENCES

- American Society of Heating, Refrigerating, and Air-Conditioning Engineers 1985. ASHRAE Handbook, 1985 Fundamentals. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta GA.
- Bull, J., Davis, P., Cumali, Z., Nozaki, S., Sullivan, R., Meixel, G., and Shen, L. 1981. "Earth contact subroutine development." Task 7, DOE Contract No. DE-AC03-80SF11508. Consultants Computation Bureau, Oakland CA.
- Crow, L.W. 1980. "Development of hourly data for weather year for energy calculations (WYEC), including solar data, at 21 stations throughout the United States." ASHRAE RP 239, American Society of Heating, Refrigeration, and Air-conditioning Engineers.
- Ceylan, T. H. and Myers, G. E. 1979. "Long-time Solutions to Heat-Conduction Transients with Time-Dependent Inputs." *Journal of Heat Transfer* 102, pp. 111-116.
- Energy Analysis Program, Applied Science Division. 1987. "User's Manual for PEAR 2.0, Program for Energy Analysis of Residences." Lawrence Berkeley Laboratory, Berkeley CA.
- Huang, Y.J., Ritschard, R. et al. 1987. "Methodology and Assumptions for Evaluating Heating and Cooling Energy Requirements in New Single-family Residential Buildings (Technical Support Document for the PEAR Microcomputer Program)." Lawrence Berkeley Laboratory Report LBL-19128, Berkeley CA.
- Huang, Y.J., Ritschard, R.L., and Bull, J.C. 1985. "Simplified Calculations of Energy use in Residences Using A Large DOE-2 Data Base." Lawrence Berkeley Laboratory Report LBL-20107, Berkeley CA.
- Johnson, R., Sullivan, R., Nozaki, S., Selkowitz, S., Conner, C., and Arasteh, D. 1983. "Building envelope thermal and daylighting analysis in support of recommendations to upgrade ASHRAE/IES Standard 90 final report.", Lawrence Berkeley Laboratory Report LBL-16770, Berkeley CA.
- Labs, K. 1981. "Regional Analysis of Ground Above-ground Climate." ORNL Report Sub-81/40451/1, Oak Ridge National Laboratory.
- Lawrence Berkeley Laboratory and Los Alamos Scientific Laboratory. 1980. "DOE-2.1B Reference Manual, Parts 1 and 2." Berkeley CA.
- Shen, L.S. Poliakova, J., and Huang, Y.J. 1987. "A Quasi-analytical Normalization Procedure for Building Foundation Heat Loss Calculations." Underground Space Center, University of Minnesota.

- Sherman, M.H. and Grimsrud, D.T. 1980. "Infiltration-pressurization Correlation: Simplified Physical Modeling." Lawrence Berkeley Laboratory Report LBL-10163, Berkeley CA.
- Sullivan, R. and Selkowitz, S. 1985. "Residential Window Performance Analysis using Regression Procedures." Lawrence Berkeley Laboratory Report LBL-19245, Berkeley CA.
- Turiel, I., Ritschard, R., Wilson, D., and Albrand, P. 1985. "Low Rise Multi-family Housing: Prototype Development and Preliminary Energy Analysis." Lawrence Berkeley Laboratory Report LBL-18823 Berkeley CA.
- Underground Space Center, University of Minnesota. 1983. "Earth Contact Systems Final Report." U.S. Department of Energy Passive Solar Program, Contract No. DE-AC03-80SF11508.
- Window and Daylighting Group, Applied Science Division. 1986. a Computer Program for Calculating U-values and Shading Coefficients of Windows." Lawrence Berkeley Laboratory, Berkeley CA.

APPENDIX A. MASTER DOE-2.1C INPUT FILE

Because of the need to make and catalogue the large number of DOE-2 simulations, an automated input/output procedure has been developed. A single master input file was created and used for the entire data base. The input file is processed by an utility program and reduced to a DOE-2 readable input file with the selected parametric inputs and necessary foundation flux data.

POST-PROCESSOR PARTIAL

```
*(*)*(*)*(*)*(*)*(*)
                                              (*)*(*)*(*)*(*)*(*)*
   Internal loads as in PNL data base runs (January 1987)
        INPUT
               LOADS
               LOADS ..
LINE-1 *PROTOTYPE FOUNDATION OPTION AND CODE *
LINE-2 *LOCATION WEATHER TAPE WALL EQUIPMENT *
*Dummy
        TITLE
*Dummy
*Dummy
               LINE-3 *
*Dummy
               LINE-4 *
*Dummy
               LINE-5 *
            PARAMETER
 $
                                                                  $
 $
      IWALLAREA = area of interior walls
 $
                                                                  $
     -- prototype parameters --
                 $ FLOORAREA=1540 PERIM=166 IWALLAREA=1088
$ BSMTAREA=1540
$ ROOFZ=8.0 ROOFHT=14.757 ROOFWD=27.5
$One Story
$One Story
$One Story
$One Story
                 $ WALLWD=41.5 WALLHT=8.0 WINDOWWD=11.55
$ WALLX=61.5 SHADEX=81.5
$One Story
$One Story
                 $ INTLOAD=56857 LATLOAD=.2138
$Two Story
                 $ FLOORAREA=2240 PERIM=136 IWALLAREA=1560
$Two Story
                 $ BSMTAREA=1120
$Two Story
                 $ ROOFZ=16.0 ROOFHT=14.757 ROOFWD=20.0
$ WALLWD=34.0 WALLHT=16.0 WINDOWWD=8.4
STwo Story
$Two Story
                 $ WALLX=54.0 SHADEX=74.0
                 $ INTLOAD=62724 LATLOAD=.1938
$Two Story
$Split Level
                 $ FLOORAREA=1904 PERIM=84 IWALLAREA=1328
                 $ UPERIM=68 UPFNDAREA=560
$ BSMTAREA=784
$Split Level
$Split Level
$Split Level
                 $ ROOFZ=8.0 ROOFHT=14.0 ROOFWD=14.757
                 $ WALLWD=21.0 WALLHT=8.0 WINDOWWD=5.712
$ WALLX=59.17 SHADEX=79.17
$Split Level
$Split Level
$Split Level
                 $ INTLOAD=59900 LATLOAD=.2029
$Townhouse
                 $ FLOORAREA=1200 IWALLAREA=976 BSMTAREA=600
                 $ ROOFZ=16.0 ROOFHT=15.811 ROOFWD=10.0
$Townhouse
$Townhouse
                 $ WALLHT=16.0 WINDOWWD=4.5
$Townhouse
                 $ WALLX=45.0 SHADEX=65.0
                 $ INTLOAD=53972 LATLOAD=.2252
$Townhouse
$Mid Town
$End Town
                 $ PERIM=40 WALLWD=10.0
                 $ PERIM=70 WALLWD=17.5
$Apartment
                 $ FLOORAREA=1200 IWALLAREA=976 BSMTAREA=1200
```

```
$Apartment
                      $ ROOFZ=16.0 ROOFHT=21.082 ROOFWD=15.0
  $Apartment
                        WALLHT=8.0 WINDOWWD=9.0
  $Apartment
                      $ WALLX=45.0 SHADEX=65.0
  $Apartment
                      $ INTLOAD=53972 LATLOAD=.2252
  $MApartment
                      $ PERIM=60 WALLWD=15.0
 $EApartment
                      $ PERIM=100 WALLWD=25.0
  * ---- Location parameters
 *Dummy
                     Fdn Layers dependent on soil type for location
     --- Conservation parameters ---
 $High Infiltration
                            $ INFILT = .0007
$ INFILT = .0005
 $Medium Infiltration
 $Low Infiltration
                              $INFILT = .0003
 $1-pane Windows
                               $ UWINDOW = 1.35
 $2-pane Windows
                                 UWINDOW = .535
UWINDOW = .327
UWINDOW = .1
 $3-pane Windows
 $M-pane Windows
 $1. Shading Coefficient $ GLSCOEF=1.0
$.7 Shading Coefficient $ GLSCOEF=0.7
 $.4 Shading Coefficient $ GLSCOEF=0.4
 $R00 Ceiling
                               $ ROOFL = r0roof
 $R11 Ceiling
                               $ ROOFL = rllroof
 $R19 Ceiling
                                 ROOFL = r19roof
 $R22 Ceiling
                               $ ROOFL = r22roof
 $R30 Ceiling
                               $ ROOFL = r30roof
 $R38 Ceiling
                                 ROOFL = r38roof
$R49 Ceiling
$R60 Ceiling
                               $ ROOFL = r49roof
                               $ ROOFL = r60roof
$ WALLL = r0rwall
$R00 Reg siding wall
$R11 Reg siding wall
                               $ WALLL = rllrwall
$R19 Reg siding wall
$R27 Reg siding wall
                               $ WALLL = r19rwall
                               $ WALLL = r27rwall
$ WALLL = r34rwall
$R34 Reg siding wall
$R00 Stucco wall
                               $ WALLL = r0swall
$R11 Stucco wall
                               $ WALLL = rllswall
$R19 Stucco wall
$R27 Stucco wall
                               $ WALLL = r19swall
                               $ WALLL = r27swall
$R34 Stucco wall
                               $ WALLL = r34swall
*Dummy
            Main Fdn U-effective from file proto.fdn
*Dummy
            Upper UFd U-effective from file proto.fdn
$FMO Bsmt
                $ FLRL=r0flr B1WALLHT=8 B2WALLHT=0.00001
SFM1 Bsmt
                $ FLRL=r0flr B1WALLHT=4
                                             B2WALLHT=4
B2WALLHT=4
$FM2 Bsmt
                $ FLRL=r0flr B1WALLHT=4
               $ FLRL=r0flr B1WALLHT=0.00001 B2WALLHT=8
$ FLRL=r0flr B1WALLHT=0.00001 B2WALLHT=8
$FM3 Bsmt
$FM4 Bsmt
               $ FLRL=r0flr BlWALLHT=0.00001 B2WALLHT=8
$ FLRL=r11flr BlWALLHT=8 B2WALLHT=0.00001
$ FLRL=r30flr BlWALLHT=8 B2WALLHT=0.00001
$FM5 Bsmt
$FM6 Bsmt
$FMO Crawl
                               $ FLRL=r0flr
$FM1 Crawl
                               $ FLRL=r11flr
$FM2 Crawl
$FM3 Crawl
                               $ FLRL=r19flr
                               $ FLRL=r30flr
```

```
$FM4 Crawl
                           $ FLRL=r38flr
 $FM5 Crawl
                           $ FLRL=-999
         end of parameters -
         RUN-PERIOD
                            JAN 1 1986 THRU DEC 31 1986
         DIAGNOSTIC
                            CAUTIONS, WIDE, ECHO, SINGLE-SPACED ..
 *Dummy
         BUILDING-LOCATION
                            LAT=L1, LON=L2,T-Z=L3, ALT=L4, WS-HEIGHT-LIST=(12 MONTH TOWER HEIGHTS)
 *Dummy
                            AZIMUTH=0 SHIELDING-COEF=0.19
                            TERRAIN-PAR1=.85 TERRAIN-PAR2=.20
                            WS-TERRAIN-PAR1=.85 WS-TERRAIN-PAR2=.20
                            FUNCTION =(*SHADING*,*NONE*)
                    WARNINGS
          LOADS-REPORT
                             SUMMARY=(LS-E) ..
         Loads Schedules ----
 DAYINTSCH DAY-SCHEDULE
$CEC internal loads profile
 $ The following shading schedule is modified by function SHADING $ to give .63 during the cooling season defined as periods with
 $ more than 5 cooling degree days for the four previous days.
          SCHEDULE THRU DEC 31 (ALL) (1,24) (0.80) ..
SHADCO
 $---- Constructions -----
WINDOWGT
                   GLASS-TYPE
                                 $ Windows
                       SHADING-COEF-GLSCOEF
                       GLASS-CONDUCTANCE-UWINDOW ..
WALLCON
                   CONSTRUCTION
                                  $ Wall section
                      LAYERS=WALLL
ROOFCON
                  CONSTRUCTION
                                   $ Roof section, with joist
                      LAYERS=ROOFL .
IWALLCON
                  CONSTRUCTION
                                   $ Interior walls
                      LAYERS=iwall1
DOORCON
                  CONSTRUCTION
                                  $ Solid door
                      U-VALUE=.7181
FSLABCON
                  CONSTRUCTION
                                  $ Floor slab in contact with soil
$Split $
                     LAYERS=FSLABL ..
```

```
$Two St$ IFLRCON
                     CONSTRUCTION $ Floor over conditioned space
  $Two St$
                        LAYERS=iflrl
  $Split $ IFLRCON
                      CONSTRUCTION
                                    $ Floor over conditioned space
  $Split $
                        LAYERS=iflrl
                                    $ Floor over conditioned space
 $Townho$ IFLRCON
                     CONSTRUCTION
  $Townho$
                     LAYERS=iflrl .. CONSTRUCTION $ Floor over conditioned space
 $Apart $ IFLRCON
 $Apart $
                       LAYERS=iflrl ..
 $Bsmt constructions
 $Bsmt
            $ FLRCON
                        CONSTRUCTION
                                       $ Floor over unconditioned space
 $Bsmt
                          LAYERS=FLRL
            $ BWALLICON CONSTRUCTION $ Uninsulated Basement wall
 $Bsmt
 $Bsmt
                          LAYERS=ROBWALL ..
            $ BWALL2CON CONSTRUCTION $ Insulated Basement wall
 $Bsmt
 $FMO Bsmt $
                          LAYERS=ROBWALL
 $FM1 Bsmt $
$FM2 Bsmt $
                          LAYERS=R5BWALL
                          LAYERS=R10BWALL ..
 $FM3 Bsmt $
                          LAYERS=R5BWALL
 $FM4 Bsmt $
$FM5 Bsmt $
                          LAYERS=R10BWALL ...
                          LAYERS=ROBWALL
 $FM6 Bsmt $
                          LAYERS=ROBWALL
 $Crawl space constructions
 $Crawl
           $ FLRCON
                        CONSTRUCTION $ Floor over unconditioned space
 $Crawl
 $Crawl $ LAYERS=FLRL .. $Regcrawl $ CWALLCON CONSTRUCTION $ Uninsul. siding crawlspace walls
                          LAYERS=r0rcwall
 $Stucrawl $ CWALLCON
                        CONSTRUCTION $ Uninsul. stucco crawlspace walls
 $Stucrawl $
                          LAYERS=r0scwall ..
 $SpltSlab $ BWALL2CON CONSTRUCTION $ Interior fdnwall in Split-level
 $SpltSlab $
                          LAYERS=r0fcwall
$SpltBsmt $ UWALLCON CONSTRUCTION $ Wall bet Room & Bsmt in Splitlevel $SpltBsmt $ LAYERS=uwall1 ..
$SpltCrawl$ UWALLCON CONSTRUCTION $Wall bet Room & Crawl in Splitlevel
                        LAYERS=uwall1 ...
 $---- Shades -----
SURROUNDN BUILDING-SHADE $ Effect of neighboring houses north
                      HEIGHT=10 WIDTH=SHADEX
                      X=0 Y=SHADEX AZIMUTH=180
                      TRANSMITTANCE=0.50 TILT=90 ...
SURROUNDS BUILDING-SHADE
                                $ Effect of neighboring houses south
                      LIKE SURROUNDN
                      X=SHADEX Y=0 AZIMUTH=0 ...
SURROUNDE BUILDING-SHADE
                               $ Effect of neighboring houses east
                      LIKE SURROUNDN
                      X=SHADEX Y=SHADEX AZIMUTH=270 ..
SURROUNDW BUILDING-SHADE
                               $ Effect of neighboring houses west
                      LIKE SURROUNDN
X=0 Y=0 AZIMUTH=90 .. $Apartment $ LANDINGN BUILDING-SHADE $ 4ft 2nd story landing north
                       HEIGHT=4 WIDTH=WALLX
$Apartment $
                       X=20 Y=WALLX Z=8.0 AZIMUTH=180
$Apartment $
                      TILT=0
$Apartment $ LANDINGS BUILDING-SHADE $ 4ft 2nd story landing south
$Apartment $
                      LIKE LANDINGN X=WALLX Y=20 AZIMUTH=0 ...
```

```
$Apartment $ LANDINGE BUILDING-SHADE $ 4ft 2nd story landing east $Apartment $ LIKE LANDINGN X=WALLX Y=WALLX AZIMUTH=270 .. $Apartment $ LANDINGW BUILDING-SHADE $ 4ft 2nd story landing west LIKE SURROUNDN X=20 Y=20 AZIMUTH=90 ..
            Space --
       Sensible internal loads are assumed at 4692kWh/year plus
       0.9kWh/sqft for lighting. Latent loads assumed 1300kWh/year
  ROOMCOND SPACE-CONDITIONS
                          TEMPERATURE = (74)
                          SOURCE-TYPE-PROCESS
                          SOURCE-SCHEDULE=INTLDSCH
                          SOURCE-BTU/HR=INTLOAD
                          SOURCE-SENSIBLE=1.
                          SOURCE-LATENT=LATLOAD
                          INF-METHOD=S-G
                          FRAC-LEAK-AREA = INFILT
                          FLOOR-WEIGHT=0
                          FURNITURE-TYPE-LIGHT
                         FURN-FRACTION=0.29
                         FURN-WEIGHT=3.30
 $Ach report$
                         FUNCTION=(*NONE*,*INFILTRATION*)
 THEROOM
             SPACE
                         SPACE-CONDITIONS-ROOMCOND
                         AREA=FLOORAREA
                         VOLUME=FLOORAREA TIMES 8. ..
 * Walls
 INTWALL
             INTERIOR-WALL
                         INT-WALL-TYPE=INTERNAL
                         AREA-IWALLAREA CONSTRUCTION-IWALLCON ...
NWALL
            EXTERIOR-WALL
                         WIDTH=WALLWD CONSTRUCTION=WALLCON
                         X-WALLX Y-WALLX HEIGHT-WALLHT
NDOOR
            DOOR
                         HEIGHT=6.5 WIDTH=.75 CONSTRUCTION=DOORCON X=3.0 ..
NWIND1
                         GLASS-TYPE=WINDOWGT X=5.0 Y=3
            WINDOW
                        HEIGHT=4.0 WIDTH=WINDOWWD SHADING-SCHEDULE=SHADCO
$Split $
                        OH-A=5.0 OH-B=1.0 OH-W=WALLWD OH-D=2.0 OH-A=5.0 OH-B=1.0 OH-W=WALLWD OH-D=2.0
$One St$
$Two St$
                        WINDOW LIKE NWIND1 Y=11.0
            NWIND2
                        OH-A=5.0 OH-B=1.0 OH-W=WALLWD OH-D=2.0 ..
$Two St$
$Townhos
            NWIND2
                        WINDOW LIKE NWIND1 Y=11.0
                        OH-A=15.0 OH-B=1.0 OH-W=WALLWD TIMES 3 OH-D=2.0 ..
OH-A=5.0 OH-B=1.0 OH-W=WALLWD TIMES 2 OH-D=2.0 ..
VALL LIKE NWALL X=20 Y=20 AZIMUTH=180 ..
$Mid Tos
$End To$
SWALL
            EXTERIOR-WALL
SDOOR
            DOOR
                        LIKE NDOOR
LIKE NWIND1
SWIND1
            WINDOW
$Two St$
                        WINDOW LIKE NWIND2 Y=11.0 ..
            SWIND2
$Townho$
            SWIND2
                        WINDOW
                                 LIKE NWIND2 Y=11.0
EWALL
            EXTERIOR-WALL
                                 LIKE NWALL X=WALLX Y=20 AZIMUTH=90 ..
EDOOR
           DOOR
                       LIKE NDOOR
EWIND1
            WINDOW
                        LIKE NWIND1
$Two St$
          EWIND2
                        WINDOW LIKE NWIND2 Y=11.0 ...
```

```
$Townho$
             EWIND2
                         WINDOW LIKE NWIND2 Y=11.0
 WWALL
             EXTERIOR-WALL
                                  LIKE NWALL X=20 Y=WALLX AZIMUTH=270 ..
 WDOOR
             DOOR
                        LIKE NDOOR
 WWIND1
             WINDOW
                         LIKE NWIND1
 $Two St$
                        WINDOW LIKE NWIND2 Y=11.0 .. WINDOW LIKE NWIND2 Y=11.0 ..
             WWIND2
 $Townho$
             WWIND2
 * Floors
           FOUNDATION UNDERGROUND-FLOOR $ Slab floor
HEIGHT=10 WIDTH=BSMTAREA TIMES
 $Slab
 $Slab
 $Slab
                         TILT=180 CONSTRUCTION=FSLABCON
 $Slab
                        U-EFFECTIVE=FDNUEFF
                        FUNCTION =(*NONE*,*FNDQ*)
INTERIOR-WALL $ Floor bet Theroom and Basement
 $Slab
 $Bsmt
           INTERFLR
 $Bsmt
                        TILT=180 CONSTRUCTION=FLRCON
 $Bsmt
                        AREA=BSMTAREA NEXT-TO=BASEMENT
 $Crawl $ INTERFLR
                        INTERIOR-WALL
                                            $ Floor bet Theroom and Crawlspace
 $Crawl $
$Crawl $
                        TILT-180 CONSTRUCTION-FLRCON
                        AREA-BSMTAREA NEXT-TO-CRAWLSPACE
 $Two St$
                        INTERIOR-WALL INT-WALL-TYPE=INTERNAL AREA=BSMTAREA CONSTRUCTION=IFLRCON TILT=180 ...
            INTFLOOR
 $Two St$
 $Split $
                        INTERIOR-WALL INT-WALL-TYPE=INTERNAL
            INTFLOOR
 $Split $
                        AREA-UPFNDAREA CONSTRUCTION-IFLRCON TILT-180 ..
 $Townho$
            INTFLOOR
                        INTERIOR-WALL INT-WALL-TYPE=INTERNAL
 $Townho$
                        AREA-BSMTAREA CONSTRUCTION-IFLRCON TILT-180 ...
 * Split level walls and floors
$Split $
                        EXTERIOR-WALL LIKE NWALL X=38.17 WIDTH=18.17
            NWALL2
$Split $
                        Z=-3 HEIGHT=16 ...
                       WINDOW GLASS-TYPE=WINDOWGT X=5.0 Y=3.0
$Split $
           NWIND2
$Split $
                         SHADING-SCHEDULE=SHADCO HEIGHT=4 WIDTH=4.284 ..
$Split $
            NWIND3
                       WINDOW LIKE NWIND1 Y=11 WIDTH=4.284 OH-W=18.17 EXTERIOR-WALL LIKE SWALL X=41 WIDTH=18.17
$Split $
            SWALL2
$Split $
                        Z=-3 HEIGHT=16
$Split $
                       WINDOW LIKE NWIND2
            SWIND2
$Split $
            SWIND3
                       WINDOW LIKE NWIND3
$Split $
                       EXTERIOR-WALL LIKE EWALL Y=41 WIDTH=18.17
           EWALL2
$Split $
                       Z=-3 HEIGHT=16
$Split $
           EWIND2
                       WINDOW LIKE NWIND2
                       WINDOW LIKE NWIND3 ...
$Split $
           EWIND3
$Split $
           WWALL2
                       EXTERIOR-WALL LIKE WWALL Y=38.17 WIDTH=18.17
                       Z=-3 HEIGHT=10 ..
WINDOW LIKE NWIND2 ..
WINDOW LIKE NWIND3 ..
WINDOW LIKE NWIND3 ..

**STREET** TIMES .1
$Split $
$Split $
           WWIND2
$Split $
           WWIND3
$Split $
           UPPERFND
$Split $
$Split $
                       TILT=180 CONSTRUCTION=SLABCON
$Split $
                       U-EFFECTIVE=UPFUEFF
$Split $
                       FUNCTION =(*NONE*,*UPFNDQ*) ...
UNDERGROUND-WALL $ Vertical concrete wall
$SpltSlab $ MIDFND
$SpltSlab $
                       HEIGHT=3.0 WIDTH=28
$SpltSlab $
                       U-EFFECTIVE=FDNUEFF
$SpltSlab $
                       CONSTRUCTION-BWALL2CON
                                          L2CON ..
$ Vertical wall next to basement
$SpltBsmt $ MIDFND INTERIOR-WALL
$SpltBsmt $
                      HEIGHT=3.0 WIDTH=28 NEXT-TO=BASEMENT
$SpltBsmt $
                       CONSTRUCTION-UWALLCON ...
```

```
$SpltCrawl$ MIDFND
                         INTERIOR-WALL
                                             $ Vertical wall next to crawl
                         HEIGHT=3.0 WIDTH=28 NEXT-TO=CRAWLSPACE
   $SpltCrawls
  $SpltCrawl$
                         CONSTRUCTION=UWALLCON ...
  * Apartment upper unit space
  $Apartment $ UPROOM
                             SPACE
                                        LIKE THEROOM
  $Apartment $
                                        FUNCTION=(*NONE*,*NONE*)

WALL $Floor bet Theroom and Uproom
  $Apartment $ APTFLR
                             INTERIOR-WALL
  $Apartment $
                             CONSTRUCTION=IFLRCON AREA=BSMTAREA
  $Apartment $
                            NEXT-TO=THEROOM TILT=180
  $Apartment $
                UPINTWALL INTERIOR-WALL LIKE INTWALL
  $Apartment $ UPNWALL
                            EXTERIOR-WALL LIKE NWALL Z=8.0 ..
  $Apartment $ UPNDOOR
$Apartment $ UPNWIND
                            DOOR
                                       LIKE NDOOR ...
                            WINDOW
  $MApartment$
                                        OH-B=1.0 OH-W=WALLWD TIMES 3 OH-D=2.0 .
                            OH-A=15.0
  $EApartment$
                            OH-A=5.0 OH-B=1.0 OH-W=WALLWD TIMES 2 OH-D=2.0 ..
  $Apartment $ UPSWALL
                            EXTERIOR-WALL
                                                  LIKE SWALL Z=8.0 ..
 $Apartment $ UPSDOOR
                            DOOR
                                       LIKE NDOOR
 $Apartment $ UPSWIND
                            WINDOW
                                       LIKE UPNWIND
 $Apartment $
                UPEWALL
                            EXTERIOR-WALL
                                                 LIKE EWALL Z=8.0 ..
 $Apartment $ UPEDOOR
                            DOOR
                                       LIKE NDOOR
 $Apartment $ UPEWIND
$Apartment $ UPWWALL
                            WINDOW
                                       LIKE UPNWIND
                           EXTERIOR-WALL
                                                 LIKE WWALL Z=8.0 ..
 $Apartment $ UPWDOOR
                           DOOR
                                       LIKE NDOOR
 $Apartment $ UPWWIND
                           WINDOW
                                       LIKE UPNWIND
 * Roofs -
 NROOF
            ROOF
                        X=WALLX Y=WALLX Z=ROOFZ HEIGHT=ROOFHT WIDTH=ROOFWD
                        CONSTRUCTION=ROOFCON TILT=18.435
 SROOF
                       LIKE NROOF AZIMUTH=180 X=20 Y=20
LIKE NROOF AZIMUTH=90 X=WALLX Y=20
LIKE NROOF AZIMUTH=270 X=20 Y=WALLX
            ROOF
 EROOF
            ROOF
WROOF
            ROOF
 * Split level roof
 $Split $
                       ROOF LIKE NROOF HEIGHT=14 WIDTH=10.54 Z=13 X=45.17 .. ROOF LIKE SROOF HEIGHT=14 WIDTH=10.54 Z=13 X=34 ..
            NROOF2
$Split $
            SROOF2
                       ROOF LIKE EROOF HEIGHT=14 WIDTH=10.54 Z=13 Y=34 ...
ROOF LIKE WROOF HEIGHT=14 WIDTH=10.54 Z=13 Y=45.17 ...
$Split $
            EROOF2
$Split $
            WROOF2
 * Basement
$Bsmt
            BASEMENT
                       SPACE
$Bsmt
                       AREA-BSMTAREA VOLUME-BSMTAREA TIMES 8.
$Bsmt
                       FURNITURE-TYPE=LIGHT
$Bsmt
        $
                       FURN-FRACTION=0.29
FURN-WEIGHT=3.30
$Bsmt
$Bsmt
                       FLOOR-WEIGHT=0
$Bsmt
                       ZONE-TYPE=UNCONDITIONED T=(70)
$Bsmt
                       UNDERGROUND-WALL $ Basement wall w/o insulation
          FND1WALL
$Bsmt
        $
                       HEIGHT-B1WALLHT WIDTH-PERIM
$Bsmt
                       CONSTRUCTION=BWALL1CON TILT=90
$Bsmt
                       U-EFFECTIVE= FDNUEFF
$Bsmt
                       FUNCTION =(*NONE*,*FNDQ*)
$Bsmt
                       UNDERGROUND-WALL $ Basement wall with insulation
          FND2WALL
$Bsmt
                       HEIGHT-B2WALLHT WIDTH-PERIM
$Bsmt
                       U-EFFECTIVE-FDNUEFF
$Bsmt
                       CONSTRUCTION=BWALL2CON TILT=90
         FOUNDATION UNDERGROUND-FLOOR $ basement concrete floor
$Bsmt
$Bsmt
                      HEIGHT=10 WIDTH=BSMTAREA TIMES .1
$Bsmt
       $
                      U-EFFECTIVE=FDNUEFF
```

```
$Bsmt
                      CONSTRUCTION=FSLABCON TILT=180 ...
       $
 $Crawl $
           CRAWLSPACE SPACE
 $Crawl $
                      AREA=BSMTAREA VOLUME=BSMTAREA TIMES 3.00
$Crawl $
                      INF-METHOD=S-G
            assume 1 ft2 of vents per 150 ft2 of crawl space area, effective-leakage-area = 75% of vent area
$Crawl
$Crawl
$Crawl $
                      FRAC-LEAK-AREA .005
$Crawl $
                      FLOOR-WEIGHT=0
$Crawl $
                      ZONE-TYPE=UNCONDITIONED T=(60)
$CAch report$
                      FUNCTION=(*NONE*,*CRAWLINFILT*)
$Crawl $
$Crawl $ NCWALL
                      EXTERIOR-WALL
                                       LIKE NWALL
$Crawl $
                      CONSTRUCTION=CWALLCON
                                                HEIGHT=1.50 Z=-3.00
$Crawl $ SCWALL
                      EXTERIOR-WALL
                                       LIKE SWALL
$Crawl $
                      CONSTRUCTION=CWALLCON
                                                HEIGHT=1.50 Z=-3.00
$Crawl $ ECWALL
                      EXTERIOR-WALL
                                       LIKE EWALL
$Crawl $
                      CONSTRUCTION=CWALLCON
                                                HEIGHT=1.50 Z=-3.00
$Crawl $ WCWALL
                      EXTERIOR-WALL
                                      LIKE WWALL
$Crawl $
                      CONSTRUCTION=CWALLCON
                                              HEIGHT=1.50 Z=-3.00
$Crawl $ FOUNDATION UNDERGROUND-FLOOR $ Crawlspace dirt floor
$Crawl $
                      HEIGHT-10 WIDTH-BSMTAREA TIMES .1
$Crawl $
                      TILT=180 CONSTRUCTION=FSLABCON
$Crawl $
                      U-EFFECTIVE=FDNUEFF
$Crawl $
                     FUNCTION=(*NONE*,*FNDQ*)
          END
FUNCTION
          NAME=SHADING
          LEVEL=BUILDING
ASSIGN
          Y=SCHEDULE-NAME(SHADCO)
          IHR=IHR IDAY=IDAY IMO=IMO DBT=DBT
ASSIGN
ASSIGN
          IPRDFL=IPRDFL ISUNUP=ISUNUP ...
CALCULATE
      IF (IPRDFL .LE. 0) GO TO 2
      SC=Y
      GO TO 70
    2 IF (IHR .NE. 1) GO TO 5
      CDH=0
      HDH=0
      IDAYH=0
    5 CONTINUE
      IF (ISUNUP .EQ. 0) GO TO 25
      DELTA=DBT-65.0
      IF (DELTA .GT. 0.00) GO TO 10
      HDH=HDH+ABS(DELTA)
      GO TO 20
   10 CDH=CDH+DELTA
   20 CONTINUE
      IDAYH=IDAYH+1
   25 IF (IHR .NE. 24) GO TO 70
      CDDD=CDH/IDAYH
      HDDD=HDH/IDAYH
      IF (CDDD .LT. 5.00) GO TO 29
IF (SC .NE. 0 80) CO TO 27
      IF (SC .NE. 0.80) GO TO 27 ICOUNT=ICOUNT+1
      IF (ICOUNT .LE. 4) GO TO 40
  27 IHCOUNT=0
```

```
SC=0.60
         GO TO 70
     29 IF (SC .NE. 0.60) GO TO 30
         IHCOUNT=IHCOUNT+1
         IF (IHCOUNT .GE. 4) GO TO 30
         SC=0.60
        GO TO 70
     30 ICOUNT=0.0
     40 SC=0.80
     70 CONTINUE
        Y=SC
     PRINT 80,Y,IMO,IDAY,IHR,CDDD,CDH,ICOUNT,IHCOUNT 80 FORMAT( 'SHADING : ADD=',8F10.2)
 END-FUNCTION
 $FndQ function
 $FndQ function
                   FUNCTION NAME - FNDQ
 $FndQ function
                             LEVEL = UNDERGROUND-WALL
 $FndQ function ASSIGN
$FndQ function ASSIGN
                             DOY=IDOY UGFQ=QUGF UGWQ=QUGW
                             QTABL = TABLE
 $FndQ flux table for main foundation from Minnesota model data file
                          CALCULATE
 $FndQ function
                         WEEK = DOY / 3.0
UGWQ = 0.0
 $FndO function
 $FndQ function
                          UGFQ = PWL(QTABL, WEEK)
 $FndQ function
                      PRINT 10, DOY, WEEK, UGWQ, UGFQ 10 FORMAT('FNDQ', 4F10.2)
 $FndQ function
 $FndQ function
                         END-FUNCTION
 $UFdQ function
 $UFdQ function
                  FUNCTION NAME = UPFNDQ
 SUFdQ function
                             LEVEL - UNDERGROUND-WALL
$UFdQ function
SUFdQ function ASSIGN SUFdQ function ASSIGN
                             DOY=IDOY UPUGFQ=QUGF UPUGWQ=QUGW ...
                             UPQTABL = TABLE
SUFdQ flux table for upper foundation from Minnesota model data file
SUFdQ function
                         CALCULATE
$UFdQ function
                         WEEK = DOY / 3.0
UPUGWQ = 0.0
$UFdQ function
$UFdQ function
                         UPUGFQ = PWL(UPQTABL, WEEK)
                      PRINT 10, DOY, WEEK, UPUGWQ, UPUGFQ 10 FORMAT('UPFNDQ', 4F10.2)
$UFdQ function
$UFdQ function
$UFdQ function
                         END-FUNCTION
$Ach
       function
$Ach
       function
                 FUNCTION NAME=INFILTRATION
$Ach
       function
                             LEVEL-BUILDING
       function ASSIGN IDOY=IDOY IMO=IMO HR=IHR FLOORAREA=FLOORAREA ...
$Ach
       function ASSIGN IPRDFL=IPRDFL FNTYPE=FNTYPE
$Ach
                                                          INFIL1=CFMINF
$Ach
       function
                  CALCULATE
$Ach
                         IF (FNTYPE .NE. 2) GO TO 8
IF (IPRDFL .LE. 0) GO TO 2
      function
$Ach
      function
$Ach
       function
                         IMTH=1
$Ach
      function
                        DL=0
$Ach
      function
                         TOTAL=0
$Ach
      function
                      2 IF ((IDOY .EQ. 365) .AND. (HR .EQ. 24)) GO TO 3
$Ach
      function
                        IF (IMTH .EQ. IMO) GO TO 5
$Ach
      function
                      3 AVG=TOTAL/(DS*24)
$Ach
      function
                        INF=AVG*60/(FLOORAREA*8)
```

```
$Ach
       function
                        PRINT 80, IMTH, AVG, INF
 $Ach
       function
                        TOTAL=0
 $Ach
       function
                       DL=DL+DS
 $Ach
       function
                     5 IMTH=IMO
 $Ach
      function
                       DS=IDOY-DL
 $Ach
      function
                       TOTAL=TOTAL+INFIL1
                    80 FORMAT( '$$INF 1' ,F4.0,F10.2,F10.5)
 $Ach
       function
 $Ach
      function
                     8 CONTINUE
 SAch
      function
                       END
 $Ach
      function
                END-FUNCTION
$CAch function
$CAch function FUNCTION
                           NAME=CRAWLINFILT
$CAch function
                           LEVEL-BUILDING
$CACh function ASSIGN IDOY=IDOY IMO=IMO HR=IHR FLOORAREA=FLOORAREA ...
$CAch function ASSIGN IPRDFL=IPRDFL FNTYPE=FNTYPE INFIL3=CFMINF ...
$CAch function CALCULATE
$CAch function
                       IF (FNTYPE .NE. 2) GO TO 8
IF (IPRDFL .LE. 0) GO TO 2
$CAch function
$CAch function
                       IMTH=1
$CAch function
                       DL=0
$CAch function
                       TOTAL=0
$CAch function
                    2 IF ((IDOY .EQ. 365) .AND. (HR .EQ. 24)) GO TO 3 IF (IMTH .EQ. IMO) GO TO 5
3 AVG=TOTAL/(DS*24)
$CAch function
$CAch function
$CAch function
                       INF=AVG*60/(FLOORAREA*3)
$CAch function
                       PRINT 80, IMTH, AVG, INF
$CAch function
                      TOTAL=0
$CAch function
$CAch function
                      DL=DL+DS
                    5 IMTH=IMO
$CAch function
                      DS=IDOY-DL
$CAch function
                       TOTAL=TOTAL+INFIL3
                   80 FORMAT( '$$INF 3',F4.0,F10.2,F10.5)
$CAch function
$CAch function
                    8 CONTINUE
$CAch function
                      END
$CAch function
                      END-FUNCTION
         COMPUTE LOADS
$Loads report$
                 SAVE-FILES ..
  *(*)*(*)*(*)*(*)*(*)
                                             (*)*(*)*(*)*(*)*(*)*
  *(*)*(*)*(*)*(*)*(*) File name:SYS.PROD
                                             (*)*(*)*(*)*(*)*(*)*
  *(*)*(*)*(*)*(*)*(*)
                         Date: Nov 3 1986
                                             (*)*(*)*(*)*(*)*(*)*
  *(*)*(*)*(*)*(*)*(*)
                                              *)*(*)*(*)*(*)*(*)*
  INPUT
                    SYSTEMS
        TITLE LINE-1 *PROTOTYPE FOUNDATION OPTION AND CODE * LINE-2 *LOCATION WEATHER TAPE WALL EQUIPMENT *
*Dummy
*Dummy
*Dummy
               LINE-3 *
*Dummy
               LINE-4 *
*Dummy
               LINE-5
                                                                 *
         DIAGNOSTIC
                        CAUTIONS ECHO ...
         SYSTEMS-REPORT
                 SUMMARY=(SS-A, SS-B, SS-C, SS-F, SS-H, SS-I) ..
```

PARAMETER

\$	EK	
COOLSET=78 VTYPE=-1	SETBACK=70 SETUP=78	\$ no night setback \$ no day setup \$ enthalpic venting
\$Furn \$ \$Furn \$ \$HP \$ CBF=.098	FHIR=1.4286 MAXTEMP=120 MAXTEMP=100 CEIR=.3703	\$ 77% efficiency + 10% duct losses
*	CEIR5705	\$ 2.7 COP air conditioner
	HCAPF=-50000. ACCFM=1050	HPHCAP=-36000 HPBKUP=-17000 CTCAP=36000 CSCAP=28800.
	HCAPF=-100000. ACCFM=2100	. HPHCAP=-48000 HPBKUP=-17000 CTCAP=48000 CSCAP=38400.
\$Split Level \$ 1 \$Split Level \$ 1 *	HCAPF=-100000. ACCFM=2100	. HPHCAP=-36000 HPBKUP=-17000 CTCAP=36000 CSCAP=28800.
\$Townhouse \$ 7	HCAPF=-50000. ACCFM=1050	CTCAP=33000 CSCAP=26400.
\$Apartment \$ 1 \$Apartment \$ 2	HCAPF=-50000. ACCFM=1050	HPHCAP=-33000 HPBKUP=-17000 CTCAP=33000 CSCAP=26400.
\$		
\$ Systems S		
HTSCH SCHEDULI	E \$ heat temp	perature schedule, 7 hour night setback (ALL) (1,6) (SETBACK) (7,23) (HEATSET)
CTSCH SCHEDULI	E \$ cool temp THRU DEC 31	cerature schedule, 7 hour day setup (ALL) (1,9) (COOLSET) (10,16) (SETUP) (17,24) (COOLSET)
VTSCH SCHEDULI	THRU MAY 14	dule based on previous 4 days load (ALL) (1,24) (-4) (ALL) (1,24) (-4) (ALL) (1,24) (-4)
VOPSCH SCHEDULE	E \$Vent opera	ition schedule
WINDOPER SCHEDULE	E \$No window	(ALL) (1,24) (VTYPE) operation between 11 p.m. and 6 a.m. (ALL) (1,6) (0.0) (7,23) (1.0)
¢		(24) (0.0)
\$ Zones		
\$		
ZC1	D C H	OL OESIGN-HEAT-T=70. OESIGN-COOL-T=78. OCOL-TEMP-SCH=CTSCH OEAT-TEMP-SCH=HTSCH OCHEMP-SCH=HTSCH OCHEMP-SCH=HTSCH OCHEMP-SCH=HTSCH OCHEMP-SCH=HTSCH
THEROOM		ONE-CONTROL=ZC1

```
ZONE-TYPE=CONDITIONED ...
  $Apartment$
              UPROOM ZONE
                                 ZONE-CONTROL=ZC1
 $Apartment$
                                 ZONE-TYPE=CONDITIONED
 $Bsmt $ BASEMENT
                       ZONE
                                 ZONE-TYPE=UNCONDITIONED
 $Crawl $ CRAWLSPACE ZONE
                                 ZONE-TYPE-UNCONDITIONED
          Systems
 SYSCONTRL SYSTEM-CONTROL
                   MAX-SUPPLY-T=MAXTEMP
                   MIN-SUPPLY-T=50
 SYSAIR
           SYSTEM-AIR
                   SUPPLY-CFM=ACCFM
                   NATURAL-VENT-SCH=VOPSCH
                   VENT-TEMP-SCH=VTSCH
                   OPEN-VENT-SCH=WINDOPER
                   HOR-VENT-FRAC=0.0
  $ assume 1/4 of total window area opened for venting,
  $ and discharge coefficient of 0.6
                   FRAC-VENT-AREA=0.018
                   VENT-METHOD=S-G
                  MAX-VENT-RATE=20
SYSEOP
           SYSTEM-EQUIPMENT
                  COOLING-CAPACITY=CTCAP
                  COOL-SH-CAP=CSCAP
COIL-BF=CBF
                  COMPRESSOR-TYPE=SINGLE-SPEED
$HP
          Heatpump specifications
$HP
                  HEATING-CAPACITY=HPHCAP
$HP
                  HEATING-EIR=.37
$HP
                  HP-SUPP-HT-CAP=HPBKUP
$HP
                  MAX-HP-SUPP-T=40.
          Furnace specifications
$Furn
$Furn
       $
                 HEATING-CAPACITY=HCAPF
       $
$Furn
                  FURNACE-AUX-0.
$Furn
                  FURNACE-HIR=FHIR $ duct losses in FHIR already
RESIDEN SYSTEM SYSTEM-TYPE=RESYS
$Slab
       $
                ZONE-NAMES=(THEROOM)
                ZONE-NAMES=(THEROOM, BASEMENT)
ZONE-NAMES=(THEROOM, CRAWLSPACE)
$Bsmt
$Crawl $
                  SYSTEM-CONTROL-SYSCONTRL
                  SYSTEM-AIR-SYSAIR
                  SYSTEM-EQUIPMENT=SYSEQP
$Furn
                  HEAT-SOURCE=GAS-FURNACE
                  HEAT-SOURCE=HEAT-PUMP
             UPRESIDEN SYSTEM SYSTEM-TYPE=RESYS
$Apartment$
$Apartment$
                 ZONE-NAMES=(UPROOM)
$Apartment$
                 SYSTEM-CONTROL-SYSCONTRL
$Apartment$
                 SYSTEM-AIR-SYSAIR
$Apartment$
                 SYSTEM-EQUIPMENT=SYSEQP
$AptFurn $
                 HEAT-SOURCE=GAS-FURNACE
$AptHP
                 HEAT-SOURCE=HEAT-PUMP
```

\$Apartment\$

END .. COMPUTE SYSTEMS .. STOP ..

APPENDIX B. SAMPLE PROCESSED DOE-2.1C INPUT FILE

Appendix B contains a sample processed file for a medium insulated house with a slab foundation in Albuquerque NM.

LDL PROCESSOR INPUT DATA 08-Sep-87 18:20:07 LDL RUN 1

```
TITLE LINE-1 *One Story Slab F02 (19-11-FM1-M-2/1.) * LINE-2 *Albuquerque NM WYEC Siding Furn/AC *
  14 *
   15 *
  16 *
                         LINE-3
  17 *
                         LINE-4
  18 *
                         LINE-5
  19
  20 *
  21 *
                             PARAMETER
  22 *
  23
  24 *
                     IWALLAREA = area of interior walls
  25
  26 *
           $One Story
                                      $ FLOORAREA=1540 PERIM=166 IWALLAREA=1088
  27 *
           $One Story
                                      $ BSMTAREA=1540
           $One Story
                                     $ ROOFZ=8.0 ROOFHT=14.757 ROOFWD=27.5
$ WALLWD=41.5 WALLHT=8.0 WINDOWWD=11.55
  28 *
           $One Story
 29 *
           $0ne Story $ WALLX=61.5 SHADEX=81.5 $0ne Story $ INTLOAD=56857 LATLOAD=.2138 $Albuquerque $ FSLABL=fslabldy BSLABL=bslabldy CGNDL=cgndldy
 30 *
 31 *
 32 *
           $Albuquerque $ R5BWALL=r5bwlldy R10BWALL=r10bwldy R0BWALL=r0bwlldy $Medium Infiltration $ INFILT = .0005 $2-pane Windows $ UWINDOW = .535
 33 *
 34 *
          $2-pane Windows $UWINDOW = .535
$1. Shading Coefficient $GLSCOEF=1.0
$R19 Ceiling $R00FL = r19roof
$R11 Reg siding wall $WALLL = r11rwall
$Albuqu One Slab FM1 $FDNUEFF = .0217 $ GndU=.0000 GndT=62
 35 *
 36 *
 37 *
 38 *
 39 *
 40 *
            $ --- end of parameters -----
                                                                               -----
 41 *
 42 *
                       RUN-PERIOD
                                                        JAN 1 1986 THRU DEC 31 1986
                                                      CAUTIONS, WIDE, ECHO, SINGLE-SPACED ...
LAT=35.05 LON=106.62 T-Z=7 ALT=5310 WS-HEIGHT-LIST=
 43 *
                       DIAGNOSTIC
 44
                       BUILDING-LOCATION
 45
 46 *
                                                       (48,23,48,23,48,23,23,23,48,23,23,23)
AZIMUTH=0 SHIELDING-COEF=0.19
47 *
48 +
                                                       TERRAIN-PAR1=.85 TERRAIN-PAR2=.20
49
                                                       WS-TERRAIN-PAR1=.85 WS-TERRAIN-PAR2=.20
50 *
                                                       FUNCTION =(*SHADING*,*NONE*)
51 *
52 *
                          ABORT
                                         WARNINGS
53 *
                          LOADS-REPORT
                                                        SUMMARY=(LS-E) ..
54 *
                          ---------
55 *
           $---- Loads Schedules -----
56 *
         DAYINTSCH DAY-SCHEDULE
57 *
                                                     $CEC internal loads profile
        TAYINISCH DAY-SCHEDULE $CEC internal loads prof (1) (.024) (2) (.022) (3,5) (.021) (6) (.026) (7) (.038) (8) (.059) (9) (.056) (10) (.060) (11) (.059) (12) (.046) (13) (.045) (14) (.030) (15) (.028) (16) (.031) (17) (.057) (18,19) (.064) (20) (.052) (21) (.050) (22) (.055) (23) (.044) (24) (.027) .

INTLDSCH SCHEDULE THRU DEC 31 (ALL) DAYINTSCH ...
58 *
59 *
60 *
61 *
62 *
63 *
```

```
66 *
            $ The following shading schedule is modified by function SHADING
      67 *
            $ to give .63 during the cooling season defined as periods with
      68 *
     69 *
            $ more than 5 cooling degree days for the four previous days.
     70 *
           SHADCO SCHEDULE THRU DEC 31 (ALL) (1,24) (0.80) ...
     71 *
            $-----
     72 *
     73 *
            $---- Constructions -----
     74 *
            $-----
     75 *
           WINDOWGT
                             GLASS-TYPE
                                             $ Windows
     76 *
                                 SHADING-COEF=GLSCOEF
     77 *
                                 GLASS-CONDUCTANCE=UWINDOW ...
     78 *
           WALLCON
                             CONSTRUCTION
                                             $ Wall section
     79 *
                                 LAYERS=WALLL
     * 08
          ROOFCON
                             CONSTRUCTION
                                             $ Roof section, with joist
     81 *
                                 LAYERS=ROOFL .
     82 *
          IWALLCON
                             CONSTRUCTION
                                             $ Interior walls
    83 *
                                LAYERS=iwall1
    84 *
          DOORCON
                             CONSTRUCTION
                                             $ Solid door
    85 *
                                 U-VALUE= . 7181
    86 *
          FSLABCON
                             CONSTRUCTION
                                             $ Floor slab in contact with soil
          $$lab concrete floor$ LAYERS=FSLABL ...
    87 *
    88 *
    89 *
          $____SURROUNDN BUILDING-SHADE $ Effect of neighboring houses north
    90 *
    91 *
    92 *
                              HEIGHT=10 WIDTH=SHADEX
X=0 Y=SHADEX AZIMUTH=180
    93 *
    94 *
                              TRANSMITTANCE=0.50 TILT=90 .
         SURROUNDS BUILDING-SHADE $ Effe
    95 *
                                      $ Effect of neighboring houses south
    96 *
    97 *
                              X=SHADEX Y=0 AZIMUTH=0 ...
HADE $ Effect of neighboring houses east
    98 *
         SURROUNDE BUILDING-SHADE
   99 *
                              LIKE SURROUNDN
  100 *
                              X=SHADEX Y=SHADEX AZIMUTH=270 ...
 * 101 *
         SURROUNDW BUILDING-SHADE
                                      $ Effect of neighboring houses west
  102 *
                              LIKE SURROUNDN
 * 103 *
                             X=0 Y=0 AZIMUTH=90 ...
 * 104 *
 * 105 *
          $---- Space -----
* 106 *
          $ Sensible internal loads are assumed at 4692kWh/year plus
* 107
* 108 *
            0.9kWh/sqft for lighting. Latent loads assumed 1300kWh/year
* 109 *
* 110 *
         ROOMCOND SPACE-CONDITIONS
* 111 *
                            TEMPERATURE = (74)
* 112
                            SOURCE-TYPE=PROCESS
* 113
                            SOURCE-SCHEDULE=INTLDSCH
 114
                            SOURCE-BTU/HR=INTLOAD
 115
                            SOURCE-SENSIBLE=1
* 116
                            SOURCE-LATENT=LATLOAD
 117
                            INF-METHOD=S-G
* 118
                            FRAC-LEAK-AREA = INFILT
 119
                            FLOOR-WEIGHT=0
* 120
                            FURNITURE-TYPE=LIGHT
* 121
                            FURN-FRACTION=0.29
 122
                            FURN-WEIGHT=3.30
* 123 *
* 124 *
        THEROOM SPACE
* 125 *
                            SPACE-CONDITIONS=ROOMCOND
```

```
* 126 *
                                     AREA=FLOORAREA
     127
                                     VOLUME=FLOORAREA TIMES 8. ..
    * 128 *
              INTWALL
                         INTERIOR-WALL
   * 129 *
                                    INT-WALL-TYPE=INTERNAL
   * 130 *
                                    AREA=IWALLAREA CONSTRUCTION=IWALLCON ..
     131 *
             NWALL
                         EXTERIOR-WALL
     132 *
                                    WIDTH=WALLWD CONSTRUCTION=WALLCON
   * 133 *
                                    X=WALLX Y=WALLX HEIGHT=WALLHT
                                    HEIGHT=6.5 WIDTH=.75 CONSTRUCTION=DOORCON X=3.0 .. GLASS-TYPE=WINDOWGT X=5.0 Y=3
HEIGHT=4.0 WIDTH=WINDOWWD SHADING-SCHEDULE=SHADCO
             NDOOR
     134 *
                         DOOR
   * 135 *
             NWIND1
                         WINDOW
     136
     137 *
             $0ne St$
                                    OH-A=5.0 OH-B=1.0 OH-W=WALLWD
                                                                       OH-D=2.0
     138 *
     139 *
             SWALL
                         EXTERIOR-WALL
                                             LIKE NWALL X=20 Y=20 AZIMUTH=180 ...
   * 140 *
             SDOOR
                        DOOR
                                   LIKE NDOOR
   * 141 *
             SWIND1
                        WINDOW
                                    LIKE NWIND1
   * 142 *
             EWALL
                        EXTERIOR-WALL
                                             LIKE NWALL X=WALLX Y=20 AZIMUTH=90 ...
    143 *
             EDOOR
                                   LIKE NDOOR
LIKE NWIND1
                        DOOR
   * 144
             EWIND1
                        WINDOW
  * 145 *
             WWALL
                        EXTERIOR-WALL
                                            LIKE NWALL X=20 Y=WALLX AZIMUTH=270 ...
    146
             WDOOR
                        DOOR
                                   LIKE NDOOR
LIKE NWIND1
  * 147
             WWIND1
                        WINDOW
                    $ FOUNDATION UNDERGROUND-FLOOR $ Slab floor
HEIGHT=10 WIDTH=BSMTAREA TIMES .1
  * 148 *
             $Slab
    149
             $Slab
  * 150 *
            $Slab
                                   TILT=180 CONSTRUCTION=FSLABCON
    151 *
            $Slab
                                   U-EFFECTIVE=FDNUEFF
    152 *
            $Slab
                                   FUNCTION = (*NONE*, *FNDQ*)
                    $
  * 153 *
            NROOF
                        ROOF
                                   X=WALLX Y=WALLX Z=ROOFZ HEIGHT=ROOFHT WIDTH=ROOFWD
                                   CONSTRUCTION=ROOFCON TILT=18.435
    154
  * 155
            SROOF
                        ROOF
                                   LIKE NROOF AZIMUTH=180 X=20 Y=20
LIKE NROOF AZIMUTH=90 X=WALLX Y=20
  * 156
            EROOF
                        ROOF
   157
            WROOF
                        ROOF
                                   LIKE NROOF AZIMUTH=270 X=20 Y=WALLX
  * 158 *
                        END ..
-CAUTION---
            ALL DIAGNOSTICS FOR THE WEIGHTING-FACTOR
            CALCULATION SECTION ARE GIVEN IN ENGLISH UNITS
  * 159 *
            FUNCTION NAME=SHADING
  * 160 *
                       LEVEL=BUILDING
                       Y=SCHEDULE-NAME (SHADCO)
   161 *
            ASSIGN
  * 162 *
            ASSIGN
                       IHR=IHR IDAY=IDAY IMO=IMO DBT=DBT
   163 *
            ASSIGN
                       IPRDFL=IPRDFL ISUNUP=ISUNUP ...
  * 164 *
            CALCULATE
 * 165 *
                   IF (IPRDFL .LE. 0) GO TO 2
 * 166
                   SC=Y
   167
                  GO TO 70
   168 *
                2 IF (IHR .NE. 1) GO TO 5
   169 *
                  CDH=0
 * 170 *
                  HDH=0
 * 171 *
                  IDAYH=0
   172
                5 CONTINUE
   173 *
                  IF (ISUNUP .EQ. 0) GO TO 25
   174 *
                  DELTA=DBT-65.0
 * 175 *
                  IF (DELTA .GT. 0.00) GO TO 10
                  HDH=HDH+ABS (DELTA)
 * 176
 * 177
                  GO TO 20
 * 178 *
               10 CDH=CDH+DELTA
 * 179 *
               20 CONTINUE
 * 180 *
                  IDAYH=IDAYH+1
               25 IF (IHR .NE. 24) GO TO 70 CDDD=CDH/IDAYH
 * 181 *
 * 182 *
```

```
* 183 *
                                             HDDD=HDH/IDAYH
                                             IF (CDDD .LT. 5.00) GO TO 29
IF (SC .NE. 0.80) GO TO 27
            184 *
        * 185 *
        * 186 *
                                             ICOUNT=ICOUNT+1
        * 187 *
                                             IF (ICOUNT .LE. 4) GO TO 40
       * 188 *
                                     27 IHCOUNT=0
                                            SC=0.60
       * 189
                                            GO TO 70
       * 190 *
           191 *
                                     29 IF (SC .NE. 0.60) GO TO 30
          192 *
                                            IHCOUNT=IHCOUNT+1
           193 *
                                            IF (IHCOUNT .GE. 4) GO TO 30
           194
                                            SC=0.60
                                           GO TO 70
           195
           196
                                    30 ICOUNT=0.0
          197
                                    40 SC=0.80
          198 *
                                    70 CONTINUE
      * 199 *
                                           Y=SC
                                   PRINT 80, Y, IMO, IDAY, IHR, CDDD, CDH, ICOUNT, IHCOUNT 80 FORMAT( 'SHADING : ADD=', 8F10.2)
      * 200 *
          201 *
      * 202 *
                                        ----- SYMBOL TABLE-----
CDDD
                      **LOCAL *
                                                           CDH
                                                                                 **LOCAL*
                                                                                                                      DBT
                                                                                                                                            (GLOBAL)
HDH
                                                                                                                                                                                DELTA
                      **LOCAL*
                                                           ICOUNT
                                                                                                                                                                                                      **LOCAL*
                                                                                 **LOCAL*
                                                                                                                      IDAYH
                                                                                                                                           **LOCAL*
IPRDFL
                                                                                                                                                                                IHCOUNT **LOCAL*
                      (GLOBAL)
                                                          ISUNUP
                                                                                 (GLOBAL)
                                                                                                                      SC
                                                                                                                                            **LOCAL *
                                                                                                                                                                                                       (SCH-NM)
    * 203 *
                         END-FUNCTION
        204 *
                          FUNCTION NAME = FNDQ
        205 *
    * 206 *
                                                LEVEL = UNDERGROUND-WALL
        207
                                                DOY=IDOY UGFQ=QUGF UGWQ=QUGW ...
                      ASSIGN QTABL = TABLE

( 0, -2848.0) ( 1, -2890.9) ( 2, -2923.0) ( 3, -2940.5) ( 4, -2951.1) ( 5, -2965.2) ( 6, -2969.1) ( 7, -2989.7) ( 8, -3056.8) ( 9, -3079.3) ( 10, -3078.6) ( 11, -3047.5) ( 12, -2992.4) ( 13, -2924.8) ( 14, -2888.9) ( 15, -2965.7) ( 16, -3055.0) ( 17, -3086.0) ( 18, -3095.1) ( 19, -3080.7) ( 20, -3044.5) ( 21, -3005.8) ( 22, -3026.0) ( 23, -3023.6) ( 24, -3005.5) ( 25, -2990.5) ( 26, -2971.8) ( 27, -2949.1) ( 28, -2909.0) ( 29, -2891.7) ( 35, -2678.6) ( 36, -2622.4) ( 37, -2558.6) ( 38, -2498.7) ( 39, -2430.0) ( 40, -2388.9) ( 41, -2327.6) ( 42, -2296.8) ( 43, -2282.9) ( 44, -2244.7) ( 50, -2005.4) ( 51, -1959.2) ( 52, -1919.2) ( 53, -1877.8) ( 54, -1848.3) ( 55, -1798.8) ( 56, -1743.0) ( 57, -1689.2) ( 58, -1637.7) ( 59, -1573.3) ( 60, -1493.8) ( 61, -1418.4) ( 62, -1366.4) ( 63, -1360.2) ( 64, -1367.1) ( 70, -1172.8) ( 71, -1137.0) ( 72, -1123.4) ( 73, -1101.7) ( 74, -1077.6) ( 80, -1065.8) ( 81, -1071.6) ( 82, -1094.9) ( 86, -1099.1) ( 87, -1094.5) ( 89, -1156.5) ( 90, -1193.6) ( 91, -1209.2) ( 92, -1240.8) ( 93, -1269.8) ( 94, -1309.8) ( 95, -1343.8) ( 96, -1375.3) ( 97, -1411.7) ( 98, -1466.7) ( 99, -1575.5) ( 100, -1571.5) ( 101, -1622.6) ( 102, -1671.8) ( 103, -1710.1) ( 104, -1757.4) ( 105, -1791.8) ( 106, -1822.5) ( 107, -1874.3) ( 108, -1934.4) ( 109, -2034.2) ( 110, -2134.7) ( 111, -2260.7) ( 112, -2284.4) ( 118, -2577.7) ( 119, -2610.2) ( 120, -2659.0) ( 121, -2751.0) ( 122, -2814.3) ...
                          ASSIGN
       208 *
                          ASSIGN
                                                QTABL = TABLE
    * 209
       210
       211
       212
       213
       214
       215
       216
       217
       218 *
       219
       220
       221 *
      222
      223
       224
      225
      226
      227
      228
      229
      230 *
     231 *
     232 *
     233 *
```

```
* 234 *
               CALCULATE
  * 235 *
               WEEK = DOY / 3.0
               UGWQ = 0.0
  * 236 *
           UGFQ = PWL(QTABL, WEEK)
PRINT 10, DOY, WEEK, UGWQ, UGFQ
10 FORMAT('FNDQ', 4F10.2)
FND_FUNCTION
  * 237 *
  * 238 * C
  * 239 *
  * 240 *
              END-FUNCTION
----- SYMBOL TABLE----
DOY
       (GLOBAL)
                    QTABL
                           (TABLE)
                                         UGFQ
                                                 (GLOBAL)
                                                              UGWQ
                                                                      (GLOBAL)
 * 241 *
                 COMPUTE LOADS ..
         $.
 * 242 *
         * 243 *
 * 244 *
 * 245 *
 * 246 *
 * 247 *
 * 248 *
 * 249 *
 * 250 *
                  INPUT SYSTEMS ..
```

SDL PROCESSOR INPUT DATA 08-Sep-87 18:20:07 SDL RUN 1

```
* 251 *
           TITLE LINE-1 *One Story Slab FO2 (19-11-FM1-M-2/1.) *
   252 *
                 LINE-2 *Albuquerque NM WYEC Siding Furn/AC
  * 253 *
  * 254 *
                 LINE-4
  * 255 *
                 LINE-5 *
  * 256 *
                   DIAGNOSTIC CAUTIONS ECHO ...
   257 *
   258 *
                   SYSTEMS-REPORT
   259 *
                         SUMMARY=(SS-A,SS-B,SS-C,SS-F,SS-H,SS-I) ...
 * 260 *
 * 261 *
                  PARAMETER
 * 262 *
 * 263 *
            HEATSET=70 SETBACK=70 $ no night setback
 * 264 *
            COOLSET=78
                       SETUP=78
                                      $ no day setup
 * 265 *
            VTYPE=-1
                                      $ enthalpic venting
 * 266 *
         $Furn $
                         FHIR=1.4286
                                     $ 77% efficiency + 10% duct losses
 * 267 *
         $Furn $
                       MAXTEMP=120
 * 268 *
            CBF=.098
                         CEIR=.3703
                                      $ 2.7 COP air conditioner
 * 269 *
         $0ne Story
                      $ HCAPF=-50000. HPHCAP=-36000 HPBKUP=-17000
 * 270 *
         $0ne Story
                     $ ACCFM=1050 CTCAP=36000 CSCAP=28800.
 * 271 *
          $----
 * 272 *
          $---- Systems Schedules ----
 * 273 *
 * 274 *
 * 275 *
                  SCHEDULE $ heat temperature schedule, 7 hour night setback
         HTSCH
 * 276 *
                           THRU DEC 31 (ALL) (1,6) (SETBACK)
* 277 *
                                            (7,23) (HEATSET)
* 278 *
                                            (24)
                                                  (SETBACK)
* 279 *
        CTSCH
                  SCHEDULE $ cool temperature schedule, 7 hour day setup
* 280 *
                           THRU DEC 31 (ALL) (1,9) (CÓOLSET) (10,16) (SETUP)
* 281 *
* 282 *
                                            (17,24) (COOLSET)
* 283 *
                 SCHEDULE $Vent schedule based on previous 4 days load
        VTSCH
* 284 *
                           THRU MAY '14 (ALL) (1,24) (-4)
THRU SEP 30 (ALL) (1,24) (-4)
* 285 *
* 286 *
                           THRU DEC 31 (ALL) (1,24) (-4) ...
* 287 *
                 SCHEDULE $Vent operation schedule
        VOPSCH
* 288 *
                          THRU DEC 31 (ALL) (1,24) (VTYPE) ...
        WINDOPER SCHEDULE $No window operation between 11 p.m. and 6 a.m.
* 289 *
* 290 *
                          THRU DEC 31 (ALL) (1,6) (0.0) (7,23) (1.0)
* 291 *
* 292 *
         * 293 *
         $---- Zones -----
 294 *
 295 *
         2----2
* 296 *
        ZC1
                          ZONE-CONTROL
* 297 *
                                   DESIGN-HEAT-T=70.
* 298 *
                                   DESIGN-COOL-T=78.
* 299 *
                                   COOL-TEMP-SCH=CTSCH
* 300 *
                                   HEAT-TEMP-SCH=HTSCH
* 301 *
                                   THERMOSTAT-TYPE=TWO-POSITION ...
* 302 *
       THEROOM
                          ZONE
                                   ZONE-CONTROL=ZC1
```

```
* 303 *
                                          ZONE-TYPE=CONDITIONED ...
    304 *
   305 *
            $---- Systems
  * 306
           SYSCONTRL SYSTEM-CONTROL
  * 307 *
  * 308 *
                            MAX-SUPPLY-T=MAXTEMP
 * 309 *
                            MIN-SUPPLY-T=50
 * 310 *
 * 311 *
          SYSAIR
                     SYSTEM-AIR
 * 312 *
                            SUPPLY-CFM=ACCFM
 * 313 *
                           NATURAL-VENT-SCH=VOPSCH
 * 314 *
                            VENT-TEMP-SCH=VTSCH
 * 315 *
                            OPEN-VENT-SCH=WINDOPER
 * 316 *
                           HOR-VENT-FRAC=0.0
           $ assume 1/4 of total window area opened for venting,
 * 317 *
 * 318 *
           $ and discharge coefficient of 0.6
 * 319 *
                           FRAC-VENT-AREA=0.018
 * 320 *
                           VENT-METHOD=S-G
 * 321 *
                           MAX-VENT-RATE=20
 * 322 *
  323 *
          SYSEQP
                    SYSTEM-EQUIPMENT
  324 *
                           COOLING-CAPACITY=CTCAP
  325 *
                           COOL-SH-CAP=CSCAP
  326 *
                           COIL-BF=CBF
* 327 *
                           COMPRESSOR-TYPE=SINGLE-SPEED
* 328 *
         $Furn
                    Furnace specifications
* 329 *
         SFurn S
                           HEATING-CAPACITY=HCAPF
* 330 *
         SFurn S
                           FURNACE-AUX=O.
* 331 *
         Sfurn S
                           FURNACE-HIR=FHIR $ duct losses in FHIR already
* 332 *
         RESIDEN SYSTEM SYSTEM-TYPE=RESYS
* 333 *
* 334 *
         $$ lab $
                        ZONE-NAMES=(THEROOM)
* 335 *
                          SYSTEM-CONTROL=SYSCONTRL
* 336 *
                          SYSTEM-AIR=SYSAIR
* 337 *
                          SYSTEM-EQUIPMENT=SYSEQP
* 338 *
         $Furn $
                          HEAT-SOURCE=GAS-FURNACE
* 339 *
* 340 *
                   END ..
* 341 *
                   COMPUTE SYSTEMS ..
* 342 *
                   STOP
```

```
* 234 *
            CALCULATE
 * 235 *
            WEEK = DOY / 3.0
  236 *
            UGWQ = 0.0
  237 *
            UGFQ = PWL(QTABL, WEEK)
            PRINT 10, DOY, WEEK, UGWQ, UGFQ
 * 238 * C
          10 FORMAT ('FNDQ', 4F10.2)
 * 239 *
            END-FUNCTION
  240 *
                  ----- S Y M B O L
                                           TABLE ----
DOY
      (GLOBAL)
                 QTABL (TABLE)
                                  UGFQ
                                         (GLOBAL)
                                                   UGWQ
                                                          (GLOBAL)
  241 *
              COMPUTE LOADS ...
  242 *
        243 *
  244 *
        $ *(*)*(*)*(*)*(*)
                                       (*)*(*)*(*)*(*)*(*)*
  245 *
        $ *(*)*(*)*(*)*(*)*(*) File name:SYS.PROD
                                       (*)*(*)*(*)*(*)*(*)*
        * 246 *
 * 247 *
        $ *(*)*(*)*(*)*(*)
                                       (*)*(*)*(*)*(*)*(*)*
        * 248 *
 * 249 *
 * 250 *
              INPUT SYSTEMS ..
```

SDL PROCESSOR INPUT DATA

08-Sep-87 18:20:07 SDL RUN 1

```
TITLE LINE-1 *One Story Slab FO2 (19-11-FM1-M-2/1.) *
 * 251 *
   252 *
                LINE-2 *Albuquerque NM WYEC Siding Furn/AC
   253 *
                LINE-3
   254 *
                LINE-4
   255 *
                LINE-5 *
   256 *
                  DIAGNOSTIC CAUTIONS ECHO ...
   257 *
  258 *
                  SYSTEMS-REPORT
 * 259 *
                        SUMMARY=(SS-A,SS-B,SS-C,SS-F,SS-H,SS-I) ...
 * 260 *
 * 261 *
                 PARAMETER
 * 262 *
 * 263 *
           HEATSET=70
                        SETBACK=70
                                  $ no night setback
 * 264 *
           COOLSET=78
                        SETUP=78
                                    $ no day setup
 * 265 *
           VTYPE=-1
                                    $ enthalpic venting
 * 266 *
         $Furn $
                        FHIR=1.4286
                                    $ 77% efficiency + 10% duct losses
 * 267 *
        $Furn $
                        MAXTEMP=120
 * 268 *
           CBF=.098
                       CEIR=.3703
                                    $ 2.7 COP air conditioner
 * 269 *
                     $ HCAPF=-50000. HPHCAP=-36000 HPBKUP=-17000
         $One Story
 * 270 *
        $One Story
                     $ ACCFM=1050
                                     CTCAP=36000
                                                  CSCAP=28800.
 * 271 *
         $-----
* 272 *
         $---- Systems Schedules -----
* 273 *
         $-----
* 274 *
                 SCHEDULE $ heat temperature schedule, 7 hour night setback
* 275 *
        HTSCH
* 276 *
                          THRU DEC 31 (ALL) (1,6) (SÉTBACK) (7,23) (HEATSET)
* 277 *
* 278 *
                                          (24)
                                                 (SETBACK)
* 279 *
        CTSCH
                 SCHEDULE $ cool temperature schedule, 7 hour day setup
* 280 *
                          THRU DEC 31 (ALL) (1,9) (COOLSET)
* 281 *
                                          (10,16) (SETUP)
* 282 *
                                          (17, 24)
                                                   (COOLSET) ...
* 283 *
                 SCHEDULE $Vent schedule based on previous 4 days load
        VTSCH
* 284 *
                          THRU MAY '14 (ALL) (1,24) (-4)
* 285 *
                          THRU SEP 30 (ALL) (1,24) (-4) THRU DEC 31 (ALL) (1,24) (-4) ...
* 286 *
* 287 *
        VOPSCH
                 SCHEDULE $Vent operation schedule
* 288 *
                          THRU DEC 31 (ALL) (1,24) (VTYPE) ..
        WINDOPER SCHEDULE $No window operation between 11 p.m. and 6 a.m.
* 289 *
* 290 *
                          THRU DEC 31 (ALL) (1,6) (0.0)
* 291 *
                                          (7,23) (1.0)
* 292 *
         $-----(24) (0.0)
* 293 *
        $---- Zones -----
* 294 *
 295 *
         $-----
 296 *
        ZC1
                         ZONE-CONTROL
 297 *
                                  DESIGN-HEAT-T=70.
 298 *
                                  DESIGN-COOL-T=78.
* 299 *
                                  COOL-TEMP-SCH=CTSCH
* 300 *
                                  HEAT-TEMP-SCH=HTSCH
 301 *
                                  THERMOSTAT-TYPE=TWO-POSITION ...
* 302 * THEROOM
                         ZONE
                                  ZONE-CONTROL=ZC1
```